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Foreword

India’s contribution to mathematics, spanning from 1200 bce to 
1800 ce is well known. The decimal number system, concept of zero 
as number and negative numbers were its gifts in addition to its 
inputs into the fields of arithmetic, algebra and trigonometry. Its 
classical as well as golden period ranged from fourth to sixteenth 
century, having contributions come from great scholars like 
Āryabhaṭa, Varāhamihira, Brahmagupta and Bhāskara II. However, 
there were scores of mathematicians whose contributions went 
into oblivion owing to many a reason. Most of their works have 
not caught the attention of scholars of the last few centuries. 
This book endeavours to bring to light some of such forgotten 
mathematicians and their works.

This volume is the proceedings of an Annual Conference 
on the History and Development of Mathematics, organized 
by the Samskrita Academy, Chennai in collaboration with the 
National Mission for Manuscripts (NMM) and the Mathematics 
Department of Sri Chandrasekharendra Saraswati Vishwa 
Mahavidyalaya, Enathur under the auspices of the Indian Society 
for History of Mathematics. It informs us of many manuscripts 
like Grahagaṇitapadakam belonging to Saurapakṣa, Sūryaprakāśa, 
a commentary on Bhāskara’s Bījagaṇita; Gaṇitāmr̥talaharī of 
Rāmakr̥ṣṇa; a commentary on Bhāskara’s Līlāvatī, Gaṇakānanda; 
Karaṇakutūhalasāriṇī based on the Karaṇakūtūhala of Bhāskara II; 
Makarandasāriṇī and Mahādevīsāriṇī among many more.

The scholars, who presented papers, unearth many 
manuscripts of mathematics by unknown authors and delve 
deep into the contributions of Indian to the different branches 
of mathematics. It also pays befitting tribute to well-known 
contemporary mathematicians – T.A. Saraswati Amma and K.S. 



vi  | History and Development of Mathematics in India

Shukla. The former’s seminal works cover mathematics in Jain 
manuscripts and the entire course of geometry in India from 
the Śulbasūtras to the works of Kerala school. The latter has 
brought out eleven important works on Indian mathematics and 
astronomy starting from the Sūrya Siddhānta to the Gaṇita Kaumudī 
of Nārāyaṇa Paṇḍita.

It is with immense pleasure that the National Mission for 
Manuscripts presents this anthology. And it is my hope and belief 
that this volume will kindle keen interest of young researchers 
in Indian mathematics and their dedicated efforts will exhume 
many more unknown works of Indian mathematicians in the 
days to come.

Pratapanand Jha
Director

National Mission for Manuscripts
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– Venketeswara Pai R.				  

	 19. 	Astronomical Observations and the Introduction of 	 279
New Technical Terms in the Medieval Period

– B.S. Shylaja				  

	 20. 	Mahājyānayanaprakāraḥ: Infinite Series for Sine 	
and Cosine Functions in the Kerala Works	 293

– G. Raja Rajeswari	
– M.S. Sriram

	 21. 	Lunar Eclipse Calculations in Tantrasaṁgraha	 307 
(c.1500 ce)

– D. Hannah Jerrin Thangam	
– R. Radhakrishnan	
– M.S. Sriram	

	 22. 	Non-trivial use of the “Trairāśika” (Proportionality 	 337
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Introduction

The Annual Conference on the History and Development 
of Mathematics 2018 conducted by the Samskrita Academy, 
Chennai, in collaboration with the Mathematics Department of Sri 
Chandrasekharendra Saraswati Vishwa Mahavidyalaya (SCSVMV), 
Enathur, under the auspices of the Indian Society for History of 
Mathematics was held at SCSVMV from 27 to 29 November 2018. 
It was sponsored by the National Mission for Manuscripts, New 
Delhi.

The conference was dedicated to the memory of two eminent 
Indian Historians of Mathematics and Astronomy – Professor T.A 
Saraswati Amma and Professor K.S. Shukla. This is the centenary 
year of both these stalwarts of mathematics.

The conference was inaugurated by Shri T.S. Krishna Murthi, 
former Chief Election Commissioner of India. The function was 
presided over by Professor Dr Vishnu Potty, Vice-Chancellor, 
SCSVMV.

In the conference there were forty-six papers in all, covering 
various branches of mathematics such as arithmetic, algebra, 
astronomy and geometry both in manuscripts and printed texts. 
Speakers came from various parts of India. There was also one 
professor who had come all the way from the University of 
Switzerland. Here forty-two papers are compiled in this volume. 
Being the centenary year of these two stalwarts of mathematics, 
Professor M.D. Srinivas highlighted the seminal contributions 
of both of them. Professor Saraswati Amma has written many 
papers covering Jaina mathematics, the use of geometric methods 
in arithmetic progression and so on. But her magnum opus was 
Geometry in Ancient and Medieval India. It surveys the entire course 
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of development of geometry in India from the Śulbasūtras to 
the works of the Kerala School. Professor Shukla has brought 
out landmark editions of eleven important works on Indian 
mathematics and astronomy starting from Sūrya Siddhānta to 
Gaṇita Kaumudī of Nārāyaṇa Paṇḍita.

Manuscripts
There are almanacs belonging to different schools such as Śara, 
Ārya, Brahmā and Gaṇeśa. The pratibhāgī tables are very popular 
among the pañcāṅga makers of Karnataka and Andhra regions. In 
her paper, K. Rupa has discussed some features of pratibhāgīgaṇita 
(PRB) and tyāgarti manuscript Grahagaṇitapadakāni belonging to 
the saura-pakṣa. A comparison of parameters in these tables among 
themselves as also with modern is attempted. 

Sita Sundar Ram in her paper on the manuscript of 
Sūryaprakāśa, a commentary on Bhāskara’s Bījagaṇita, has analysed 
the text from various angles to highlight the contribution of 
Sūryadāsa. It is evident that Sūryadāsa is not only a mathematician 
but also a versatile poet.

Recently, the critical edition of the commentary Gaṇitāmr̥talaharī 
of Ramakrishna on Bhāskara’s Līlāvatī has been taken up as a project 
under the National Mission for Manuscripts by Ramakalyani. The 
date of the text has been differently noted in the colophon and the 
New Catalogus Catalogorum. The date is to be fixed based on other 
evidences. The author has discussed some important features 
noticed in the manuscripts.

The text Gaṇakānanda is very popular among the pañcāṅga 
makers of the saura-pakṣa in Andhra and Karnataka regions. 
Padmaja Venugopal has edited the text and given valuable English 
expositions. Her work is based on a single edited text in Telugu 
script.

Eclipses are natural phenomena which played an important 
role in the religious life of ancient India. They occupied a 
significant place in the astronomical texts. The Grahaṇamālā of 
Hemāṅgadaṭhakkura is one such text which lists many eclipses 
occurring between 1620 and 1708 ce. Vanaja, Shailaja and S. 
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Balachandra Rao have critically studied the text and compared 
many results therein with modern ones.

The tables of Karaṇakutūhalasāriṇī which relies on the 
Karaṇakutūhala of Bhāskara II of twelfth century are based on 
brahma-pakṣa. The author and time of the text are not known 
though manuscripts of the same are available in many libraries. 
M. Shailaja has obtained with rationale, the mathematical model 
for the construction of tables. 

Among the tables of saura-pakṣa which are used for compiling 
the pañcāṅgas, the Makarandāsāriṇī is very popular. These tables 
with explanatory ślokas are composed by Makaranda at Kāśī in 
1478. As noted by S.K. Uma, this text has some unique features 
such as determination of ahargaṇa in the sexagesimal system.

The significance of mathematics and its applications was well 
realized in ancient times. Consequently, there are a number of texts 
on the subject. There are very renowned national libraries which 
have a number of manuscripts on mathematics both published and 
unpublished. Bhuvaneswari takes three of these in Tamil Nadu 
and discusses the manuscripts available, scope for critical edition 
and future research.

Astronomical tables known as sāriṇī are usually a collection of 
necessary data and rules for standard astronomical data. Shubha 
along with B.S. Shylaja and P. Vinay has studied the manuscript 
Mahādevīsāriṇī and compared the positions of certain planets with 
modern calculations.

Algebra
Long before the time of Fibonacci (twelfth century) the sequence 
was known in India. It was applied in connection with metrical 
science by Piṅgala, Hemacandra and others. The concept of 
Fibonacci numbers was more advanced in the Gaṇitakaumudī of 
Nārāyaṇa Paṇḍita. Vinod Mishra has discussed the development 
of Fibonacci sequence and possible applications in statistics, coding 
theory, medicine and others.

The definition given by various ancient Indian mathematicians 
for the term karaṇī matches with the modern mathematical term 



4  | History and Development of Mathematics in India

surd. Śulbasūtras deal with the rules and measurements for 
constructing the fire altar, where the words dvikaraṇī and trikaraṇī 
occur. They were denoted by ka 2, ka 3 and so on. Padmapriya has 
discussed the treatment of surds in ancient mathematical texts.

Bhāskarācārya in his Bījagaṇita has devoted a whole chapter to 
surds or square roots of irrational numbers. S.A. Katre in his paper 
has analysed the methods employed by Bhāskara for finding the 
square roots of quadratic surds.

A fore-shadowing of Banach’s fixed point theorem appears in 
the iterative methods of Indian mathematicians from at least the 
sixth century. The Indian manuscript tradition does not contain 
drawings but Habash Al-Hasib’s contains some drawings though 
not for the iterative methods. Johannes Thomann has discussed 
some possibilities through a reading of the related texts.

Arithmetic
The topic of arithmetic progression has been in Indian mathematics 
for a long period and every mathematician has dealt with it. 
The aim of Medha Limaye has been to compare and contrast 
the method of exposing the concept and developing solution 
techniques in the medieval and modern texts. The geometric 
representation of the arithmetic progression series by Sridhara 
and its link to recreational mathematics by Nārāyaṇa Paṇḍita are 
also discussed. 

The Līlāvatī of Bhāskara is perhaps the most popular text 
in mathematics which has been critically edited by various 
mathematicians in different languages all over the world. 
Bapudeva Sastri, a reputed mathematician of the nineteenth 
century, is one of those who has critically edited the text with new 
sūtras and explanations. In her paper, Vijayalakshmi has thrown 
light on some of his techniques and examples. 

The Pañcaviṁśaṭīkā and the Parikarmacatuṣṭaya are two texts 
of unknown authorship which have been recently edited by well-
known mathematician and Indologist Takao Hayashi. The contents 
of the texts dealing with the basic mathematical operations are 
studied by Umamahesh in his paper.
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Astronomy
Parameswara belongs to the Kerala School of Astronomy and 
Mathematics and is the author of several texts including Dr̥ggaṇita. 
The text Vākyakaraṇa of Parameswara is unique and Venkateswara 
Pai has taken for analysis and explanation some algorithms in 
obtaining the vākyas.

The observational aspects of Indian astronomers are covered 
in almost all texts. Measurements had to be accurate and the 
division of aṅgula for example into vyaṅgula is noticed in several 
texts. Hence new words were coined for the need. B.S. Shylaja has 
made a list of such new words and discusses them.

The infinite series expansion for the sine and cosine functions 
is generally ascribed to Mādhava of Saṅgamagrāma. There is a 
short work Mahājyā which describes the infinite series for the jyā R 
sin θ and sara {R (1 − cos θ)}. Rajarajeswari worked on a manuscript 
of this for her MPhil thesis submitted to the University of Madras. 
She has translated the work into English. In the present paper she 
has explained some derivations.

It was the standard Indian practice to revise the parameters 
associated with the sun and the moon after critically testing them 
during eclipses. Hannah Thangam has discussed a simplified 
version of the calculations pertaining to lunar eclipses in the 
Tantrasaṁgraha. For some recent lunar eclipses there was very 
good agreement with the values computed using Tantrasaṁgraha 
and the tabulated values.

For the mathematicians and astronomers of India, the trairāśika 
(rule of three) and the theorem of the right angle play a crucial 
part in the derivation of all the results related to the planetary 
positions. To substantiate, M.S. Sriram considered some examples 
from Bhāskara’s Grahagaṇita, one of them being the derivation 
of a second-order interpolation formula due to the renowned 
Brahmagupta of the seventh century.

Indian mathematics encompasses the era of Kerala School 
of Mathematics which has been reckoned as the golden age in 
the history of mathematics. Starting from texts of Mādhava of 
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Saṅgamagrāma, Anil Narayanan traced the lineage of Kerala 
tradition. He has stressed the feature of continuity in the tradition 
by taking an annual called Śuddhadr̥ggaṇita into account.

The only paper in Sanskrit was presented by S. Murali. In 
this he has stressed the importance of kāla (timing) to perform 
rituals. He has explained briefly the kālanirṇaya for both social 
and individual rituals. 

Geometry 
The Mānava Śulbasūtras, one of the four major Śulbasūtras of 
significance in terms of mathematical contents, has received 
relatively less attention compared to the Baudhāyana, Āpastamba 
Śulbasūtras. S.G. Dani discussed various general features and 
certain unique constructions from the Mānava Śulbasūtras, placing 
it in the overall context of Śulba literature.

The major part of mathematical principles was passed on from 
generation to generation and some of them have been recorded orally 
in sūtra forms. The Śulbasūtras depict major theorems in modern 
geometry. Sudhakar Agarkar has highlighted the geometrical 
knowledge of ancient Indians as presented in Śulbasūtras.

The important branch of mathematics which received most 
attention was geometry. Most civilizations had detailed texts on 
the subject. In his paper, Shrenik Bendi has explored how geometry 
was developed and discussed various results obtained by Vedic 
and Jaina scholars.

In his paper on T.A. Saraswati Amma, Chandrasekharan has 
analysed the methods used by her in some important topics such 
as segments of circles, cyclic quadrilaterals, trigonometric and 
inverse trigonometric series. He has also suggested extending 
her work on areas where she has only touched upon briefly due 
to paucity of time.   

General 
A unique website https: indiamathstory.com was presented by 
Sarada Devi. The website covers many mathematics conferences, 
details of reference books, resource persons, questions–answers, 
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riddles and so on. It is indeed a continuous saga as it has room 
for various additions in the future.

The Vedas are the oldest unrecorded transmission of sound. 
The Vedic mantras had to be heard from a guru and memorized 
along with the sound. There are eight vikr̥tis for chanting the Vedas. 
Of these, the gaṇa pāda is very complex. The mantras classified 
by Sage Vyāsa serve as an astro-chronological computation 
methodology. This technology when mastered and adapted can 
greatly enhance the knowledge transmission. Rajendran has listed 
those which are useful for current technology.

Modern Themes
The following are various papers in modern mathematics 
presented by the staff and students of the Mathematics Department 
of Sri Chandrasekharendra Saraswati Vishwa Mahavidyalaya, 
Enathur. 
	 •	 In her paper “A Note on Confusion Matrix and Its Real Life 

Application”, T.N. Kavitha has discussed the origin of the 
confusion matrix and definitions of various persons are 
given in a detailed manner.

	 • 	In the nineteenth century, hydrodynamics advanced 
sufficiently to derive the equation of motion of a viscous fluid 
by Navier and Stokes, only a laminar flow between parallel 
plates was solved. In the present age, with the progress in 
computers and numerical techniques in hydrodynamics, it is 
now possible to obtain numerical solutions of Navier–Stokes 
equation. E. Geeta and M. Larani discuss this in “Historical 
Development of Fluid Dynamics”.

	 •	 A. Dhanalakshmi and K. Srinivasa Rao have reviewed the 
Hosoya Polinomial and Weiner Index and some of the 
methodology used in it so far in “Role of Weiner Index in 
Chemical Graph Theory”.

	 •	 In the paper “The Origin of Semiring-valued Graph”, Ramya 
and T.N. Kavitha discuss the origin of Semiring-valued 
graph and its application fields. 



8  | History and Development of Mathematics in India

	 •	 In “History of Optimization Models in Evolutionary 
Algorithms”, K. Bharathi has discussed about the history 
of the framework, related algorithms developed and their 
applications and some of the methodologies used in it.

	 •	 Graph theory has uses beyond simple problem formulation. 
Sometimes a part of a large problem corresponds exactly 
to a graph-theoretic problem, and that problem can be 
completely solved. C. Yamuna and T.N. Kavitha analyse 
this “Graph Used to Find Crime”.

	 •	 B. Akila presents the application of calculus in the transition 
curve for a rail track in her paper “A Discussion on Real-Life 
Application of Mathematics”.

	 •	 Operations research includes a great deal of problem-solving 
techniques like mathematical models, statistics algorithms 
to aid in decision making. J. Sengamalaselvi, in her paper 
“History of Operations Research” traces the history of 
Operations Research.

	 •	 The machine learning methods analyses and extracts 
knowledge from available data and provides an easier way 
to understand the graph structured data: proteins, protein–
protein interaction, protein structures along chemical 
pathways, social networks, WorldWideWeb, Program flow. 
The prime objective of Vijayalakshmi, in her paper “Graph 
Kernels in Protein Study” is to present a survey of graph 
kernels in protein study.

	 •	 In “Spectral Techniques in Protein Study: A Survey”, K. 
Divya and  Vijayalakshmi give a survey of graph spectral 
techniques used in protein study. This survey consists of 
description of methods of graph spectra used in different 
study areas of protein like protein domain decomposition, 
protein function prediction and similarity.

	 •	 “Review of Weiner Index and Its Applications” the aim of 
this article is to review the history of the Wiener Index and 
its progress achieved in the recent years. V. Kasthuri and A. 
Dhanalakshmi have reviewed the development of the index 
and its applications in various fields.
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	 •	 In “MATLAB in Protein Study”, D. Vijayalakshmi and A. 
Shakila brief about the use of MATLAB in various studies of 
proteins encode, amount of protein adsorption on particle, 
sequence alignments, protein structure tessellations which 
help in making the studies easy. 

The Valedictory Function of the conference was held on  
29 November 2018. The Valedictory Address was delivered by Dr 
V. Kannan, Former Pro-Vice-Chancellor, University of Hyderabad. 

The conference ended on a happy note with the Blessings of 
His Holiness Sankara Vijayendra Sarasvati Svamiji of Kāñcī Mutt 
and with assurances to meet again in the next Conference on 
History of Mathematics.

We are deeply beholden to many people including the scholars 
who have presented the articles, in the successful conduct of the 
conference. In this connection our special thanks are due to Dr 
Pratapananda Jha, Director and Dr Sangamitra Basu, Coordinator,  
Publications of the National Mission for Manuscripts, who stood 
by us from the beginning of the conference till the publication of 
its proceedings. We are also deeply indebted to Dr M.K. Tamil Selvi 
(Associate Professor, Alpha College of Engineering, Chennai), for 
reviewing all the papers on modern topics in mathematics.

Dr. Sita Sundar Ram
(Secretary, The Samskrita Academy, Chennai) 

Dr. V. Ramakalyani 
(Project Consultant, HoMI Project, IIT, Gandhinagar & Member, 

The Samskrita Academy, Chennai)
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Tribute to 
T.A. Saraswati Amma and K.S. Shukla1

M.D. Srinivas

T.A. Saraswati Amma (1918–2000)
Tekkath Amayankoth Kalam Saraswati Amma was born in 
Cherpulassery, Palakkad, Kerala, in the Kollam year 1094  

(1918-19). She completed her BSc with 
Physics and Mathematics from Madras 
University, and Masters degree in Sanskrit 
from Banaras Hindu University. In 1957, 
she joined the Department of Sanskrit, 
Madras University, and worked with the 
renowned Sanskrit scholar V. Raghavan, 
who encouraged her to work on the history 
of Indian Mathematics. In 1961, Saraswati 
Amma joined the faculty of Department of 
Sanskrit, Ranchi Women’s College, where 

she worked for the next twelve years. In 1964, Saraswati Amma 
was awarded the PhD degree by the Ranchi University for her 

	 1	 Excerpts from the talk given by Prof. M.D. Srinivas: “Recollecting the 
Seminal Contributions of T.A. Saraswati Amma and K.S. Shukla”, at 
the Annual Conference on History and Development of Mathematics, 
2018. – Editors

T.A. Saraswati Amma
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dissertation (which was Series submitted in January 1963) on 
“Geometry in Ancient and Medieval India”. While at Ranchi, 
she also supervised the thesis of R.C. Gupta on “Trigonometry in 
Ancient and Medieval India”. During 1973-80, Saraswati Amma 
served as Principal, L.N.T. Mahila Vidyalaya, Dhanbad. After 
retirement, Saraswati Amma returned to Kerala and stayed in 
Ernakulam and later at Ottappalam. 

Publications of Saraswati Amma
	 1.	 “Śreḍhī-kṣetras or Diagrammatic Representation of 

Mathematical Series”, Journal of Oriental Research, 28 (1958-
59): 74-85.

	 2.	 “The Cyclic Quadrilateral in Indian Mathematics”, 
Proceedings of the All-India Oriental Conference, 21 (1961): 295-
310.

	 3.	 “The Mathematics of the First Four Mahādhikāras of the 
Trilokaprajñapti”, J. of the Ganganath Jha Research Inst., 18 
(1961-62): 27-51.

	 4.	 “Mahāvīra’s Treatment of Series”, Journal of Ranchi University, 
I (1962): 39-50.

	 5.	 “The Development of Mathematical Series in India after 
Bhāskara II”, Bulletin of the National Inst. of Sciences of India, 
No. 21 (1963): 320-43.

	 6.	 “Development of Mathematical Ideas in India”, Indian 
Journal of History of Science, 4 (1069): 59-78.

	 7.	 “Sanskrit and Mathematics”, Paper read at the First 
International Sanskrit Conference, New Delhi, 1972, see 
Summary of Papers, vol. III, pp. 15-16, published in the 
Proceedings (of the conference), vol. III, part I, pp. 196-200 
(New Delhi, 1980) Also reprinted in the “Souvenir of the 
World Sanskrit Conference, New Delhi, 2001, 63-78”

	 8.	 “The Treatment of Geometrical Progressions in India”, Paper 
sent to Indian Science Congress for Symposium on History 
of Mathematics (Delhi, 1975). For a summary, see Advance 
Notes on Symposia, pp. 7-8.



|  13Tribute to T.A. Saraswati Amma and K.S. Shukla

	 9.	 “Indian Methods of Calculating the Volume of the Frustrum 
of a Pyramid”, in Sanskrit and Indology: Dr. V. Raghavan 
Felicitation Volume, Delhi, pp. 335-39, 1975.

	 10.	 “Bhāskarācārya”, in Cultural Leaders of Indian Scientists, ed. 
Raghavan, New Delhi, 1976, pp. 100-106.

	 11.	 Reviews of Candracchāyāgaṇita, Siddhāntadarpaṇa and 
Sphuṭanirṇaya-tantra, Vishveshvaranand Indological J., 15 (1977): 
173-76.

	 12.	 Geometry in Ancient and Medieval India, Delhi, 1979; xii + 280 
pp., rev. 2nd edn, Delhi 1999. The book was reviewed by S. 
Balacandra Rao in Deccan Herald Magazine dated 21 October 
1979; by A.K. Bag in Gaṇita Bhāratī, vol. 3 (1981), pp. 53-54; 
by Michio Yano in Historia Mathematica 10 (1983): 467-70; by 
A.I. Volodarsky in Mathematical Reviews 84 (1984): 2516-17; 
by D.G. Dhavale in the Annals of Bhandarkar Oriental Research 
Institute, vol. 69 (Pune, 1988) and by J.N. Kapur in JHS, 24 
(1989): 93-94.

	  13.	 Review (by T.A. Saraswati Amma) of Geometry according to 
Śulabasūtra (authored by R.P. Kulkarni, Pune, 1983), Gaṇita 
Bhāratī, 8 (1986): 64-65. See vol. II (1989): 60-62 for Kulkarni’s 
reply to the review.

Saraswati Amma’s magnum opus, however, is her book 
Geometry in Ancient and Medieval India. Saraswati Amma’s book 
has been widely acclaimed as a worthy successor to the volumes 
of Datta and Singh, as it presents a truly majestic survey of the 
entire course of development of Geometry in India, from the 
Śulbasūtras to the work of the Kerala School. Saraswati Amma 
has also taken great pains to present original citations and 
translations of important verses, both from published works as 
well as unpublished manuscripts. Some of the works cited by her, 
such as the commentary of Parameśvara on Līlāvatī, are yet to see 
the light of the day. Saraswati Amma’s book still constitutes the 
standard reference for students on Indian Geometry.
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K.S. Shukla (1918–2007)
Kripa Shankar Shukla was born on 12 June 1918 in Lucknow. 
He completed his undergraduate and postgraduate studies in 
Mathematics at Allahabad University. In 1941, Shukla joined the 
Department of Mathematics, Lucknow University, to work with 

Prof. Avadhesh Narayan Singh (1905-
54). Professor Singh, the renowned 
collaborator of Bibhutibhusan Datta 
(1888–1958), had joined Lucknow 
University in 1928. 

Shukla’s first paper, published 
in 1945,  presented a  c lear  and 
comprehensive survey of the second 
correction (due to evection) for the 
Moon. In 1955, Shukla was awarded the 
D Litt degree from Lucknow University 
for his thesis on “Astronomy in the 

Seventh-century India: Bhāskara I and His Works”. Dr. Shukla 
became the worthy successor of Professor Singh to lead the research 
programme on Indian Astronomy and Mathematics at Lucknow 
University. Though he retired as Professor of Mathematics in 1979, 
he continued to guide researchers and work relentlessly to publish 
a number of outstanding articles and books, including an edition 
and translation of Vaṭeśvarasiddhānta (c.904), the largest known 
Indian astronomical work with over 1,400 verses, brought out by 
INSA in 1985-86.

Professor Shukla wrote popular textbooks on Trigonometry 
(1951) and Algebra (1957). He also published Hindi translations 
of the first volume of History of Hindu Mathematics by B.B. Datta 
and A.N. Singh (in 1956), and the textbook on Calculus by A.N. 
Upadhyay (1980).

Professor Shukla’s Editions and Translations of  
Source-Works of Indian Astronomy and Mathematics
Professor Shukla brought out landmark editions of eleven 
important source-works of Indian Astronomy and Mathematics. 

K.S. Shukla
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The books edited by K.S. Shukla and published by Lucknow 
University, Lucknow:
	 1.	 Sūryasiddhānta with commentary of Parameśvara (1957).
	 .	 Pāṭīgaṇita of Śrīdharācārya, ed. and tr. with Notes (1959).
	 3.	 Mahābhāskarīya of Bhāskara I, ed. and tr. with Notes (1960).
	 4.	 Laghubhāskarīya of Bhāskara I, ed. and tr. with Notes (1963).
	 5.	 Dhīkoṭidakaraṇa of Śrīpati, ed. and tr. with Notes, Akhila 

Bharatiya Sanskrit Parishad, Lucknow (1969).
	 6.	 Karaṇaratna of Devācārya, ed. and tr. with Notes (1979).
	 7.	 Bījagaṇitāvataṁśa of Nārāyaṇa Paṇḍita, ed., Akhila Bharatiya 

Sanskrit Parishad, Lucknow (1970).
The following books are edited by K.S. Shukla and published by 

Indian National Science Academy, New Delhi:
	 8.	 Āryabhaṭīya of Āryabhaṭa, ed. and tr. with Notes, with by 

K.V. Sarma (1976).
	 9.	 Āryabhaṭīya of Āryabhaṭa with the commentary of Bhāskara 

I (1976).
	 10.	 Vaṭeśvarasiddhānta of Vaṭeśvara, ed. and tr. with Notes, 2 

vols. (1985-86).
	 11.	 Laghumānasa of Mañjula, ed. and tr. with Notes (1990).
	 12.	 Professor Shukla also collaborated with renowned scholar 

Samarendra Nath Sen (1918-92), in editing the pioneering 
History of Indian Astronomy brought out by the Indian 
National Science Academy in 1985 (2nd edn published in 
2000).

Professor Shukla also wrote over forty important articles, which 
have ushered in an entirely new perspective on the historiography 
of Indian Astronomy and Mathematics. In 1954, Shukla published 
an article on “Ācārya Jayadeva: The Mathematician” where he 
brought to light the verses of Jayadeva on vargaprakr̥ti and the 
cakravāla method, as cited in a manuscript of the commentary 
Sundarī of Udayadivākara (c.1073) on Laghubhāskarīya. This 
commentary still remains unpublished.
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A Comparative Study of 
Pratibhāgī Gaṇitam and Tyāgarti 

Manuscript Grahagaṇita-Padakāni

K. Rupa
Padmaja Venugopal

S.K. Uma
S. Balachandra Rao

Abstract: Compilers of annual calendrical-cum-astronomical 
almanacs (pañcāṅgas) depend on traditional astronomical tables 
called differently as sāriṇīs, padakas, vākyas and koṣṭakas. There 
are a large number of such tables belonging to different schools 
(pakṣas) like Saura, Ārya, Brāhma and Gaṇeśa.

In the present paper we discuss some features of Pratibhāgī 
Gaṇitam (PRB) and Tyāgarti manuscript Grahagaṇitapadakāni 
belonging to the saura-pakṣa. A comparison of parameters in 
these tables among themselves as also with modern is attempted.

Keywords: Astronomical tables, pañcāṅgas, pratibhāgī, 
Grahagaṇitapadakāni.

Introduction
The Pratibhāgī Gaṇitam1 tables are very popular among the pañcāṅga 

	 1	 A copy of the Pratibhāgī Gaṇitam (PRB) manuscript procured from the 
Oriental Research Institute (ORI), Mysore.
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makers in Karnataka and Andhra regions. Most possibly the name 
of the text comes from the fact that the relevant tables are computed 
for each degree (pratibhāga in Kannada). Pratibhāgī in contrast to 
the Siddhānta and Karaṇa texts provides tables for each degree. 

The Grahagaṇitapadakāni, this manuscript belongs to a small 
place called Tyāgarti (also Tāgarti) of Sagar tāluka in Shimoga 
district of Karnataka. This manuscript is based on the Sūrya-
Siddhānta. 

Pratibhāgī Gaṇitam
The Pratibhāgī Gaṇitam tables are very popular among the pañcāṅga 
makers in Karnataka and Andhra regions. Most possibly the 
name of the text comes from the fact that the relevant tables were 
computed for each degree (pratibhāga).

Āryabhata I (b.476 ce) and the now popular Sūrya-Siddhānta 
provide R sin differences (R = 3438') to get R sin for every 3°45'. 
Some Karaṇa texts (handbooks) provide brief tables for the manda 
and śīghra equations for the respective anomalies at even higher 
interval (step-lengths). For example, Gaṇeśa Daivajña in his 
Grahalāghavam (1520 ce) tabulates the manda and śīghra equations 
of the planets at intervals of 15°. Another popular handbook,  the 
Karaṇakutūhalam of Bhāskara II (b.1114 ce) gives the jyā khaṇḍas 
(blocks of R sin values) for every 10°. In such cases intermediate 
values are obtained by interpolation. 

Now, the Pratibhāgī Gaṇitam in contrast to the Siddhānta and 
Karaṇa texts provides tables for each degree. In the photocopy 
with us, no mention of either the author or of the period of the 
composition is mentioned. The mean positions of the heavenly 
bodies have to be worked out using the Kali ahargaṇa, the elapsed 
number of civil days for the given date from the beginning of the 
Kali-Yuga (the mean midnight between 17 and 18 February 3102 
bce). Therefore, the Pratibhāgī Gaṇitam text has no need to mention 
or use a later epoch.

The popularity of the Pratibhāgī Gaṇitam in parts of Karnataka 
and Andhra regions is very clear from the fact that a good number 
of manuscripts of the main text as also its commentaries are listed 
in the Catalogue of ORI, Mysore.
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fig. 2.1: First page of the Pratibhāgī Gaṇitam

The important table in Pratibhāgī Gaṇitam are on:
	 1.	 the mean motions of the sun, the moon, apogee (mandocca) 

and the ascending node (Rāhu) of the moon and the five 
planets; 

	 2. 	the mandaphala (equation of centre) of the bodies; 
	 3. 	the śīghraphala (equation of conjunction) of each planet; 
	 4.	 the sun’s declination (krānti); and 
	 5. 	the moon’s latitude (vikṣepa, śara).

The tables of mean motions of the bodies for each day from 
1 to 9 days, every 10 days from 10 to 90 days, every 100 (nūru 
in Kannada) days from 1 to 9 hundreds, every 1,000 (sāvira in 
Kannada) from 1,000 to 9,000, from 10,000 to 9,000, 1 to 9 lakh 
(hundred thousand, lakṣa in Sanskrit and Kannada) and finally 
for 10 and 20 lakh (i.e. one and two million) days.

Mean Motion, Revolutions and Sidereal Periods
in the Pratibhāgī Gaṇitam
From the mean motion of the sun for two million days given 
in the Pratibhāgī Gaṇitam, we have 5475Rev. 6S25°18'33"02"' (the 
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superscript S stands for “signs”, i.e. rāśis of the zodiac). This gives 
us the sun’s mean daily motion, SDM = 0°.985602617263794. From 
SDM, we obtain the length of the nirayaṇa (sidereal) solar year = 
365.2587703139661 days and sāvana-dinas (civil days) in a mahāyuga 
(of 432 × 104 years) as 1,577,917,888 days. 

The number of civil days in a mahāyuga according to the Sūrya-
Siddhānta is 1,577,917,828 so that the bīja (correction) for civil days 
is +60.

We list the mean daily motions, revolutions (bhagṇas) and the 
sidereal periods of the bodies according to Pratibhāgī Gaṇitam in 
Table 2.1.
Note: In Table 2.1, (i) the mean daily motions are given correct to 15 
decimal precision (on computer), (ii) the revolutions in a mahāyuga 
(of 432 × 104 solar years) are given to the nearest integer, and  
(iii) the sidereal periods are correct to 4 or 5 decimal places.

Tyāgarti Manuscript Grahagaṇitapadakāni
We procured recently a copy of a manuscript, called 
Grahagaṇitapadakāni2 from a private collection. The manuscript 
belongs to a small place called Tyāgarti (also Tāgarti) of Sagar 

	 2	 The Tyāgarti manuscript was procured by the present authors from 
Dr Jagadish of Shimoga.

Table 2.1: Daily Motion, Revolutions and Sidereal Periods  
in Pratibhāgī Gaṇitam

Body	 Mean Daily Motion	 Revolutions in 	          Sidereal
		  Mahāyuga		           Period

Moon	 13°.17635250091553	 57,753,339	 27.32167

Moon’s mandocca	 0°.1113829091191292	 488,203	 3232.0937

Rāhu	 0°.0529848113656044	 232,238	 6794.4

Kuja	 0°.5240193605422974	 2,296,832	 686.9975

Budha’s śīghrocca	 4°.092318058013916	 17,937,061	 87.9697

Guru	 0°.08309634029865265	 364,220	 4332.32076

Śukra’s śīghrocca	  1°.60214638710022	 7,022,376	 224.69857

Śani	 0°.03343930840492249	 146,568	 10765.7729
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tāluka in Shimoga district of Karnataka. The latitude (akṣa) of the 
place is given in terms of akṣabhā (palabhā). This value coincides 
closely with the known modern value of the latitude of Tyāgarti.

The Grahagaṇitapadakāni explicitly mentions that it is based 
on the Sūrya-Siddhānta. Even like the Pratibhāgī Gaṇitam, the 
Grahagaṇitapadakāni does not need and does not mention a 
contemporary epoch. Both of them need the Kali ahargaṇa for 
a given date. Kali ahargaṇa (KA) represents the number of civil 
days elapsed since the beginning of the Kali-Yuga, viz. the mean 
midnight between 17 and 18 February 3102 bce. 

This Kali ahargaṇa accumulated to more than ten lakh (one million) 
days around 365 bce. For example, as on 1 August 2011, KA = 1,867,309, 
more than 1.8 million days. Therefore, both the Pratibhāgī Gaṇitam and 
the Grahagaṇitapadakāni manuscripts provide the mean motion tables 
even for a lakh, ten lakh and a crore (ten million) days for the sake 
of accuracy. These data help us to obtain the sidereal period and the 
bhagṇas (revolutions in a mahāyuga) of a heavenly body.

The Grahagaṇitapadakāni contains 32 folios of tables for 
astronomical computations. One or two folios are missing in 
between. For example, the folio for the mean motion of Saturn 
(śanimadhyapadakāni) is missing in the bundle of folios.

Interestingly, the manuscript is in Nāgarī script with numerals 
completely in Kannada script. Even many Kannada words, by 

fig. 2.2: Folio from Tyāgarti manuscript
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the way of instructions or descriptions, are in the Nāgarī script. 
Folio 31 (back) mentions akṣaliptāḥ 842|17", i.e. the latitude in 
arc minutes is 842|17. This means the local latitude φ = 842'17" = 
14°02'17". Further, folio 32 mentions laṅkodayaviṣuvacchāyāṅgula 3. 
This means that the equinoctial shadow (called akṣabhā or palabhā) 
is 3 aṅgulas (with the gnomon of length 12 aṅgulas). This gives:

latitude,� � � � � � �� �tan tan ( . )1 13
12 0 25 14 02'10".48

Folio 11 (front) mentions kalivarṣa 4813. Now, Kali year 4813 
corresponds to 1712 ce. In the same folio the mandoccas (apogees) 
and the pātas (nodes) of the planets are given.

Although for obtaining the mean positions, contemporary 
epoch is not needed, the author of the Grahagaṇitapadakāni perhaps 
desired updation of the apogee and nodes of the planets. However, 
the rates of motion of these special points as given in the Sūrya-
Siddhānta are unrealistic from the point of view of our modern 
known results.

In addition to giving the Kali year as 4813 (1712 ce), 
Grahagaṇitapadakāni mentions the nirayaṇa mean position of the sun 
as 11Ra10°08'03" which gives the date as 22 March of the year 1712 
ce with ayanāṁśa (amount of equinoctial precession) as about 18°. 
From this data the Grahagaṇitapadakāni can be dated as 22 March 
1712 ce, three centuries old. 

Solar Year, Civil Days, Revolutions, etc. in 
Grahagaṇitapadakāni
The Grahagaṇitapadakāni gives the sun’s mean motion for 1 crore 
(107) days as 10Ra06°33'20" (along with 27,377 revolutions as can be 
calculated). From this we get 
	 (i)	 The sun’s mean daily motion, SDM = 0°.9852676868. 

Therefore, in a mahāyuga of 4,320,000 solar years, the number 
of civil days (sāvana-dinas):

4,320,000 × 360° 
= 1,577,917,792

          SDM
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	 The corresponding value according to the Sūrya-Siddhānta is 
1,577,917,828. Therefore, bīja (correction) of civil days is – 36 
and 

	 (ii)	 the length of the nirayaṇa solar year = 360°/SDM = 
365.2587563 days.

Based on the mean motions of the bodies for ten million days in 
the Grahagaṇitapadakāni, we have worked out bhagṇas (revolutions) 
and hence the bīja as shown in Table 2.3.
		  In Table 2.3 we observe:
	 i.	 the mean motions are given for one crore (10 million) days 

in terms of revolutions, rāśis (signs), degrees (aṁśa), minutes 
(kalās) and seconds (vikalās), 

	 ii.	 revolutions in a mahāyuga are to the nearest integer, 
	 iii.	 the last column gives the bījas (correction) to the revolutions 

given in the Sūrya-Siddhānta, and 
	 iv.	 details of Śani do not appear in the table since the related 

folio is missing in the Grahagaṇitapadakāni.

Table 2.3: Mean Daily Motions, Revolutions and Bījas in 
Grahagaṇitapadakāni

Body Mean Motion for 1 Crore Days Revolutions in 
Mahāyuga

Bīja

Revolution Ra D M S TYGMS SS
Moon 366,009 9 11 27 8 57,753,332 57,753,336 –4

Moon’s 
mandocca

3,093 11 19 6 20 488,202 488,203 –1

Rāhu 1,471 9 18 8 0 232,237 232,238 –1
Kuja 14,556 1 3 46 40 2,296,832 2,296,832 0
Budha’s
śīghrocca

113,675 6 0 26 30 17,937,059 17,937,060 –1

Guru 2,308 2 23 25 20 364,219 364,220 –1
Śukra’s
śīghrocca

44,504 0 23 56 0 7,022,375 7,022,376 –1



24  | History and Development of Mathematics in India

Mandaphalas and Śīghraphalas in Pratigāmī 
Gaṇitam and Grahagaṇitapadakāni

fig. 2.3: Folio from the Pratigāmī Gaṇitam consisting of Śukra’s 
mandaphala and śīghraphala

In finding the true longitudes of the sun and the moon we need 
apply only the major correction, mandaphala (equation of centre). 
But, in the case of the five planets, besides the mandaphala, the 
other major equation to be applied is śīghraphalas.

Mandaphala in the Saura Tables
The mandapala (equation of centre) of a heavenly body is given by 
the classical expression:

		  sin( ) sin( )MP P
R

MK= ,			                (1)
where MP is the required mandaphala, MK is the mandakendra 
(anomaly from the apogee), p is the mandaparidhi (periphery of the 
related epicycle), R = 360°, the periphery of the deferant circle. The 
mandakendra is defined as MK = (mandocca – mean planet) where 
mandocca is the mean apogee.

Āryabhaṭa (b.476 ce) takes the peripheries of the sun and the 
moon as constants at 13.5° and 31.5° respectively and those for 
the five planets are variable ones. On the other hand, the Sūrya-
Siddhānta and the tables under consideration here adopt variable 
peripheries for all the seven bodies. Table 2.4 lists the limits of these 
paridhis (peripheries) according to the Sūrya-Siddhānta. 



|  25Pratibhāgī Gaṇitam and Grahagaṇita-Padakāni

Table 2.4: Manda Paridhis according to the Sūrya-Siddhānta

 

Body		             Manda Paridhi
		        (MK = 0°, 180°)          (MK = 90°, 270°)

Sun			  14°			   13°40'
Moon			  32°			   31°40'
Kuja			  75°			   72°
Budha			  30°			   28°
Guru			  33°			   32°
Śukra			  12°			   11°
Śani			  49°			   48°

The manda paridhi is maximum at the end of an even quadrant (i.e. 
for MK = 0°, 180°) and minimum at the end of an odd quadrant 
(i.e. for MK = 90°, 270°).

If the peripheries at the ends of even and odd quadrants are 
denoted respectively by pe and po, then the variable periphery for 
mandakendra is given by 

		  p = pe  – (pe – po ) × |sin (MK)|,		              (2)
where |sin (MK)| means the numerical or absolute value of sin (MK).

Thus, according to the Sūrya-Siddhānta, the mandaphala is given 
by (1) using (2). The values of mandaphala of the sun as per the 
Grahagaṇitapadakāni and the Pratigāmī Gaṇitam, for mandakendra at 
intervals of 10°, are compared with the actual ones, obtained from 
(1) and (2) in Table 2.5.

Table 2.5: Mandaphala of the Sun
MK	 Mandaphala (Equation of Centre)
	 TYGMS	 PRB		 Modern
	  Kavik 	 Kavik 		  Kavik

10°	 23	 07	  23	 07		 23	 07	
20°	 45	 19	  45	 19		 45	 21
30°	 66	 03	  66	 03		 66	 03
40°	 84	 36	  84	 35		 84	 37
50°	 100	 31	 100	 33		 100	 33
60°	 113	 25	 113	 21		 113	 24
70°	 122	 47	 122	 47		 122	 50
80°	 128	 31	 128	 32		 128	 36
90°	 130	 31	 130	 31		 130	 31
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In Table 2.5, we have compared the mandaphala values for the sun 
whose manda paridhi varies from 13°40' to 14°. We notice that the 
values differ by a maximum of 5 arc seconds. 

According to the Indian classical texts, the greatest mandaphala 
among the seven heavenly bodies is for Kuja (Mars) whose manda 
paridhi varies from 72° to 75°. For mandakendra = 90°, the manda 
paridhi, p = po = 72º so that the corresponding mandaphala = 72º/2π 
≈ 11º27'33" = 687'33". To examine how the mandaphala values for 
a planet according to the saura-pakṣa tables under consideration 
compare with one another, these are shown in Table 2.6.

We notice in Tables 2.7 and 2.8 that (i) the Grahagaṇitapadakāni 
gives the mandaphala of Kuja, Budha and Guru only in kalās, to the 
nearest arc minute while the Pratigāmī Gaṇitam provides the same 
both in kalās and vikalās. We notice that the values almost coincide 
with a difference of few arc seconds.

Table 2.6: Mandaphala of Kuja
MK 	 Mandaphala (Equation of Centre)

			  TYGMS				  PRB						                    Formula          
			   Kalās 		 Kalās			 Vikalās	           Kalās          Vikalās

10°			     123			     123			    31			   123	 31
20°			     242			      241			     31			   241	 48
30°			     352			     351			     31			   351	 32
40°			     449			     449			    23			   449	 48
50°			     534			     533			    47			   533	 58
60°			     602			     601			     57			   601	 49
70°			     651			      651			     15			   651	 36
80°			     681			      681			     29			   681	 59
90°			     692			     692			    03			   692	 13

Table 2.7: Mandaphala of Budha
MK 	 Mandaphala (Equation of Centre)

		 	TYGMS				  PRB								       Formula      
			   Kalās	 		 Kalās		 Vikalās			  Kalās      Vikalās

10°				       49				       49				     10			        49               10
20°				       96				       96				     41			        95               45
30°				     138		   	    138				     28			      138                30
40°				     176					    176				     12			      176                19
50°				     208					    208				     11			      208                22
60°				     234					    233				     53			      233                57
70°				     252					    252				     24			      252                33
80°				     264					    263				     41			      263                51
90°				     268					    267				     34			      267                39
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Table 2.8: Mandaphala of Guru
MK 	 Mandaphala (Equation of Centre)
		      TYGMS	                   PRB					      		                   Formula         
		       Kalās 		          Kalās	          Vikalās		               Kalās         Vikalās

10°			    54				   54			     26			   542	   6
20°			  107				  106			     36			   106	 40
30°			  155				  155			     11			   155	 13
40°			  199				  198			     33			   198	 43
50°			  236				  235			     47			   235	 58
60°			  266				  266			       0			   266	   0
70°			  288				  287			     54			   288	   1
80°			  301				  301			     19			   301	 27
90°			  305				  305			     58			   305	 58

In fig. 2.4 the variation of the mandaphala with the mandakendra 
(anomaly from the apogee) is shown graphically for the five 
planets. The behaviour of the graphs is sinusoidal with MP = 0° 
for MK = 0°, 180° and reaching the maximum at MK = 90°.

fig. 2.4: Variation of MP of the planets  MK

Śīghraphalas in Pratigāmī Gaṇitam 
and Grahagaṇitapadakāni
As pointed out earlier in obtaining the true planets we apply two 
major equations which are referred to as the manda-saṁskāra and 
the śīghra-saṁskāra. While the former corresponds to the equation 
of centre, the latter to the transformation from the heliocentric to 
the geocentric frame of reference for the five tārāgrahas.
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The classical procedure for śīghraphalas is based on the 
expression:

Sin( ) sin( )SP P
SKR

R SK� �� ��,

where SP is the required śīghraphalas, p is the śīghraphalas, 
the periphery of the śīghra epicycle, R = 3438' and SKR is the 
śīghrakarṇa, the śīghra hypotenuse given by

SKR2 = (sphuṭakoṭi)2 + (doḥphala)2.				     (4)

Example: Find the śīghra correction for Śani (Saturn) given the 
following:

Śani’s śīghrakendra = 62°.0406 and Śani’s corrected śīghra 
paridhi, p = 39°.88328.

We have 

	 i. 	Doḥphala = 39 88328
360

3438 62 0406 336 4284� � � � �. sin( . ) .' " .		  (5)

	 ii.	 Koṭiphala = 39 88328
360

3438 62 0406 178 5765� � � � �. cos( . ) .' " .		  (6)

	 iii	 Sphuṭakoṭi = 3438 178 5765 3616 5765' ' '� �. . .			    (7)

	 iv.	 Śīghrakarṇa = ( . ) ( . ) .336 4284 3616 5765 3632 19072 2' ' '� � .		  (8)

	 v.	 R sin (SP) = 3438 336 4284
3632 1907

31844166' '
'

'� �.
.

.			   (9)

	 vi.	 Śīghraphala, SP = sin� � �
��

�
��
� �1 318 44166

3438
5 18 53'.

'
' ".		                     (10)

The śīghraphala is additive or subtractive according as the 
śīghrakendra is less than or greater than 180°.

In the above example, since SK = 62°.0406 < 180°, SP > 0, i.e. 
SP = + 5°18'53".

It should be noted that in the case of the śīghra correction also, 
as for the mandaphala, the śīghra paridhi (periphery) p is a variable 
given by 
		  p p p p SKe e� � � �( ) sin( )o 		              (11)

The peripheries p, for different planets, at the ends of even 
and odd quadrants according to the Sūrya-Siddhānta are given in 
Table 2.9.
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The śīghra paridhi for Kuja, Budha and Śukra is greater at the 
end of the even quadrants (SK = 0°, 180°) than at the odd quadrants 
(SK = 90°, 270°). But it is the other way for Guru and Śani.

Among the five tārāgrahas, Śukra (Venus) has the maximum 
śīghra paridhi and hence we choose to tabulate its value according 
to the different sāriṇīs and padakas, at intervals of 15° for SK = 0° 
to 180° in Table 2.10.

In Tables 2.10-12 the śīghrapahala of Śukra, Kuja and Budha are 
compared according to the two astronomical tables, the Pratibhāgī 
Gaṇitam and the Grahagaṇitapadakāni with the corresponding 
values according to those obtained from formula based on the 
Sūrya-Siddhānta, as the tables are based on the Sūrya-Siddhānta.

Table 2.9: Śīghra Paridhi of Planets

Planet		           śīghra Paridhi	

	     SK = 0°, 180°		  SK = 90°, 270°

Kuja	                      235°	                                   232°
Budha	                   133°	                                   132°
Guru	                       70°	                                     72°
Śukra	                    262°	                                    260°
Śani	                         39°	                                     40°

fig. 2.5: Śīghrapadaka of Śani, a folio from the Pratibhāgī Gaṇitam
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Table 2.10: Śīghrapahala of Śukra
SK                      PBR                      TYGMS                            Modern

   0°                             0°                              0°                                   0°
 15°                   6°18'17"                          6°18'                         6°18'16"
 30°                  12°32'19"                        12°33'                         12°33'14"
 45°                  18°42'21"                        18°42'                         18°42'13"
 60°                  24°43'32"                        24°44'                         24°41'47"
 75°                  30°27'32"                        30°28'                         30°27'01"
 90°                  35°51'32"                        35°52'                         35°50'16"
105°                 40°39'06"                        40°39'                         40°38'19"
120°                  44°27'30"                        44°28'                         44°26'16"
135°                  46°23'05"                        46°23'                         46°21'23"
150°                  44°16'37"                        44°17'                         44°14'56"
165°                  32°14'13"                         32°14'                         32°12'36"
180°                             0°                              0°                                   0°

Table 2.11: Śīghrapahala of Kuja
SK                          PBR                       TYGMS                            Modern

  0°                               0°                                0°                                    0°
  30°                    703'44"                            703'                          703'44"
 60°                   1375'59"                           1376'                         1374'40"
 90°                   1968'53"                           1969'                         1967'58"
120°                     2374'8"                            2374'                         2372'27"
150°                   2191'22"                           2191'                         2189'57"
180°                            0°                                0°                                   0°

Table 2.12: Śīghrapahala of Budha

SK PBR TYGMS Modern
  0°  0°            0° 0°
 30° 476'29"  477'   476'39"
 60° 902'1"                902'  902'0"
 90° 1209'10"              1209' 1208'10"
120° 1276'40"       1278' 1276'17"
150° 906'58"             907' 906'59"
180° 0°            0° 0°

In Table 2.10 the first column the śīghrakendra, the “anomaly of 
conjunction” is taken from 0° to 180° at intervals of 15°. In Tables 
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fig. 2.6: Śukra’s (karkādi) śīghraphala, a folio from TYGMS

2.11 and 2.12 the first column the śīghrakendra, the “anomaly of 
conjunction” is taken from 0° to 180° at intervals of 30°. 

The Pratibhāgī Gaṇitam gives the śīghrapahala values in kalā 
and vikalās and the Grahagaṇitapadakāni only in kalās. We notice 
that the three texts of sāriṇīs (or padakas) are loyal to the basic text 
Sūrya-Siddhānta on which these are based and their śīghrapahala 
values are much closer to the formula-based last column.

Conclusion
In this paper we have studied mean motion, revolutions, sidereal 
periods, mandaphala and śīghraphala according to the Pratibhāgī 
Gaṇitam and the Grahagaṇitapadakāni manuscripts and compared 
their values with the modern formula.
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An Interesting Manuscript
Dealing with Algebra 

Sita Sundar Ram 

Abstract: The Bījagaṇita of Bhāskarācārya of the twelfth century 
forms the second part of his magnum opus Siddhāntaśiromaṇi. 
The Sūryaprakāśa of Sūryadāsa and the Bījapallava of Kr̥ṣṇa 
Daivajña are the commentaries available to us. The text 
Bījagaṇita, from the fourth chapter to the end of the text with 
the commentary Sūryaprakāśa have been taken for critical edition 
and translation as a project under the Indian Science National 
Academy. Several manuscripts have been collated to arrive at 
an error-free text. Since the Bījapallava, the other commentary 
is already available as an edited text; some comparison could 
be done for alternate readings. In this paper, the manuscript 
Sūryaprakāśa of Sūryadāsa has been analysed from different 
angles to highlight the contribution of Sūryadāsa.

Keywords: Sūryaprakāśa, Sūryadāsa, Bījagaṇita, commentary, 
manuscript. 

The Bījagaṇita of Bhāskarācārya of the twelfth century forms the 
second part of his magnum opus Siddhāntaśiromaṇi. It is one of the 
earliest texts devoted entirely to algebra. According to Dr Pingree in 
his Census of the exact sciences, there are at least six commentaries 
on the Bījagaṇita. Of these, the Sūryaprakāśa of Sūryadāsa and the 
Bījapallava of Kr̥ṣṇa Daivajña are available to us. 
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The Bījapallava has been edited and published from Varanasi, 
Tanjore and Jammu. The first three chapters of the Sūryaprakāśa 
from the beginning to the chapter on Kuṭṭaka were taken up for 
doctoral thesis by Pushpakumari Jain. This has been published 
by MS University, Baroda. The rest of the text, from the fourth 
chapter to the end of the text have been taken for critical edition 
and translation as a project under the Indian Science National 
Academy. Several manuscripts have been collated to arrive at an 
error-free text. 

The manuscripts (of Sūryaprakāśa of Sūryadāsa) compared are: 
	 (क)	  India Office, London, 2824 (1891), ff.71. 
	 (ख)	  Prajnapathasala Mandala, Wai 9777/11-2/551. 
	 (ग)	  British Library, San I.O. 1533a. 
	 (घ)	  British Museum, London, 447, ff.46, nineteenth century. 
	 (ङ)	  British Museum, London, 448, ff.40, nineteenth century. 

Problems Identified 
•	 Legibility was very poor in three manuscripts in (क), (ख) and 

(घ). 
•	 Two of the manuscripts had a number of mathematical 

errors – for instance, the numbers were wrongly given; the 
denominators were missing in the fractions (ङ) and (घ). 

•	 Portions of the text were deranged in manuscript (ख). 
•	 The manuscripts had to be deligently studied and compared 

to avoid mathematical errors. 
•	 The sūtras giving the rules and the examples were found only 

in manuscripts (ग) and (ङ) and missing in (क), (ख) and (घ). 

Omissions  
The following are instances where a manuscript omits an important 
but it is found in another. 

	 1-	 (क )  omits fHkUuHkkxgkjfof/uk :i'ks"ks  fß;ek.ks Nsnka'kfoi;kZlks Hkofr bfr 
v;eFkZ%A (Ekavarṇa).
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	 2.	 (•) omits ;k ýù@ÿö :ñ A ;k ú : ûý @öþ (Ekavarṇa). 

	 3.	 vu;ks% vUrjs fØ;ek.ks ;ksxa dj.;kseZgrha bfr egrh dj.kh ùýüû@ûöù 
o/% ûùýúÿöúú@üøÿöû ewya ÿûöú@ûöù f}xq.ka y?kq'p øýüú@ûöùA 
vu;ks% :ior~ vUrjs Ñrs tkra û@ûöùAA was the version in some 
manuscripts. The corrected version is given below.
(Vargaprakr̥ti) 

		 vu;ks% vUrjs fØ;ek.ks ;ksxa dj.;kseZgrha bfr egrh dj.kh øýüû@ûöù 
o/% û÷ýúÿöúú@üøÿöû ewya þûöú@ûöù f}xq.ka y?kq'p øýüú@ûöùA 
vu;ks% :ior~ vUrjs Ñrs tkra û@ûöùAA (Vargaprakr̥ti)

	 4.	 Here the necessary passage is added. Before ,oa f}?udfu"Bsu…..
(d), (?k) and (Ä) add rFkk T;s"Bewya lk/f;rqa f}?u% dfu"BoxZ 
,o b"V% dfYir%A (Vargaprakr̥ti).

	 5.	 (Ä) omits dk;kZA pRokj% {ksis ;;ks% rs prq%{ksiS% }kS {ksikS ;;ks% rs f} 
{ksisA p rs p ewys p rkH;ka :i{ksikFk±, HkkoukA (Vargaprakr̥ti) 

Mathematical Errors 

	 1-	 U;kl% d û T;s ý {ks ü¡A 
			     d û T;s ý {ks ü¡A 

		  (ङ) wrongly reads क्षे २. This is a very grave mathematical 
error found in the particular manuscript. ( Vargaprakr̥ti) 

	 2. 	The correct reading here is ewys d ûöû@ÿ T;s ÿýþ@ÿ {ks ûA (?k) 
reads d ûÿöû T;s ÿÿýþ ; (d) and (x) read d ûöû T;s ÿýþ  
leaving out the denominators. (Vargaprakr̥ti) 

	 3.	 ,oa ,df}prqfeZrs"kq {ksis"kq is the correct reading which was only 
in one manuscript. The said rule is not applicable when the 
additive is three as is given below. (Cakravāla) 

		  (क), (ख), (ग) and (ङ) read ,df}f=kprqfeZrs"kq

	 4.	 rFkk Ñrs U;kl% d ø T;s ü÷ {ks û is the right reading. But 
manuscript (ङ) reads ज्ये ८ (Cakravāla) 

	 5.	 U;kl% d ý@ü T;s ûû@ü {ks ûA is correct. (क) and (ग) read क्षे ५. 
With additive as 5, the correct solution is not obtained. 
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Emendation 

	 1.	 mÙkQor~ xq.kkIrh p ¹ÿ,ûûºA 
		  (क), (ख), (ग), (घ) and (ङ) read ११ ५ which is incorrect. The 

corrected version has been indicated within square brackets. 
	 2.	 Again (क), (ख), (ग), (घ) and (ङ) read क १/२ whereas the 

corrected version is एवं मूले [क १/३] ज्ये २/३ क्षे १ँ। It has been 
indicated within square brackets. 

	 3.	 अथ न्यास: प्र ५ँ क्षे २१। (क), (ख), (ग), (घ) and (ङ) wrongly add 
द्वितीयमूलस्य अपि भावनार्थं. There is no second root to be found 
in this example. 

	 4.	 prq.kk± of.ktka v'ok% Øes.k iapxq.kkaxeaxyferk bfrA vFk prq.kk±1¹m"Vªk'p 
f}eqfuJqfrf{kfrferkºA rFkk prq.kk± v'orjkokE;'p v"Vf}eqfuikod%A rFkk 
prq.kk± oyhonkZ% o`"kk% eqfueghus=ksUnqla[;k% vklUk~A 

		  The four traders have 5 , 3, 6 and 8 horses, 2, 7, 4 and 1 camel, 
8, 2, 1 and 3 mules and 7, 1, 2 and 1 ox respectively. 

		  All the manuscripts have left out the number of mules. It 
had to be added. (Anekavarṇa) 

	 5.	 Hkks eghirs psnsfHkæZEeS% ,rnsokI;rs fouksnkFk± has been amended as [Hkks 
l•s ,fHkæZEeS% ,rnsokI;rs eghirs% fouksnkFk± ]. 

		  The lines as they appear in the MSS seem to be addressed 
to the king, whereas it actually means “Oh (friend) please 
bring for the amusement of the king, 100 pigeons and other 
such birds amounting to 100 for a price of 100 drammas” 
(Anekavarṇa).  

Wrong Placement 

dqêðdfof/uk --- bR;FkZ% comprising of fourteen lines was wrongly 
placed in (ख) leading to a lot of confusion in reading the text. 
Comparing with other manuscripts helped in putting the entire 
section in its proper place. 

	 1 	All omit ¹m"Vªk'p f}eqfuJqfrf{kfrferkº.
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Verse Not Found in Sūryaprakāṇa 
The following example on interest rates is not found in the 
Sūryaprakāśa but in the Bījapallava. 

,dd 'kr nÙk /ukr~ iQyL; ox± fo'kksè; ifjf'k"VEk~A 
iapd'krsu nÙka rqY;% dky% iQya p r;ks%AA

 Information in Colophon  
nSoKKkukRet lw;kZfHk/kuçksÙkQs ln~chtHkk";s lqtucq/tukuanlanksggsrkS A 
la;d~ lw;Zçdk'ks iVqoVqân;èokUrfoèoaln{ks rw.k± iw.k± rq r}f}fo/& 
efrHkjSjsdo.kkZ[;chtEk~A

Sūryadāsa here says that he is the son of the astrologer Jñānarāja; 
he has written the commentary called Sūryaprakāśa for the text 
Bījagaṇita; and this is the chapter dealing with equations with one 
unknown. (Ekavarṇa) 

This information about his father and the names of the text 
and chapter are found at the beginning and end of every chapter. 

Different Reading 
Since the Bījapallava, the other commentary is already available 
as an edited text, some comparison could be done for alternate 
readings:
	 1.	 The following verse which explains the method to solve 

quadratic equations is taken from the extant algebra text of 
Śrīdharācārya and quoted by Sūryadāsa. (Madhyama) 

prqjkgrleS :iS% i{k};a xq.k;sRk~A 
vO;ÙkQoxZ:iS;ZqÙkQkS i{kkS rrks ewyEkAA 		

		  The first line being the same, the second line is quite different  
in the Bījapallava of Kr̥ṣṇa Daivajña. It is as follows: 

prqjkxrle:iS% i{k};a xq.k;sRk~A 
iwokZO;ÙkQL; Ñrs% le:ikf.k f{kisÙk;ksjsoAA

		  Both explain Śrīdhara’s method but the readings are  
different.
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	 2.	 In the following example, Sūryadāsa has taken the reading 
daśayuk meaning “along with ten”, against Kr̥ṣṇa who uses 
the reading daśabhuk meaning “after spending ten”. Both, 
therefore, have different solutions. 

	 iqjços'ks n'knks f}laxq.ka fo/k; 'ks"ka n'k;qd~ p fuxZesA 
	 nnkS n'kSoa uxj=k;s¿Hkor~ f=kfu?uek|a on rr~ fd;r~ /ue~AA

A trader paying Rs. 10 as tax on entering a town, doubled his 
remaining capital and paid Rs. 10 as exit tax. Thus in three 
towns (visited by him) his original capital tripled. Tell me 
what was the original capital? (Ekavarṇa) 

Sūryadāsa’s Solution
Let the trader’s original capital be x 
After giving tax in first city, the money he had = x – 10 
After the wealth doubled, it is = 2x – 20 
After giving away 10 more, it is = 2x – 30 
After giving tax in second city, the money he had = 2x – 40 
After the wealth doubled, it is = 4x – 80 
After giving away 10 more, it is = 4x – 90 
After giving tax in third city, the money he had = 4x – 100 
After the wealth doubled, it is = 8x – 200 
After giving away 10 more, it is = 8x – 210 
Now his capital has tripled; therefore, 8x – 210 = 3x 
Solving the equation, his original capital is x = 42. 

Kr̥ṣṇa’s Solution 
Let the trader’s original capital be x 
After giving tax in first city, the money he had = x – 10 
After the wealth doubled, it is = 2x – 20 
After spending 10 and giving away 10 more, it is = 2x – 40 
After giving tax in second city, the money he had = 2x – 50 
After the wealth doubled, it is = 4x – 100 
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After spending 10 and giving away 10 more, it is = 4x – 120 
After giving tax in third city, the money he had = 4x – 130 
After the wealth doubled, it is = 8x – 260 
After spending 10 and giving away 10 more, it is = 8x – 280 
Now his capital has tripled; therefore, 8x – 280 = 3x 
Solving the equation, his original capital is x = 56. 

Mathematical Innovation 

bR;srnFk± vLekfHk% Loxf.krs i{k};L; oxhZdj.kO;frjsds.kkfi 
fl¼ewyku;uçdkjks¿fHk fofgr%A l ;FkkA 

The method to arrive at the square root on both sides without 
resorting to squaring of the terms has been explained by us in 
our (algebra) text. This is as follows:  

vO;ÙkQ oxkZs f}xq.kks fo/s;'p vO;ÙkQ ,o ifjdYI; :iEk~A 
o.kkZgrksU;ks f}xq.kL; :ioxkZfUor% rr~ ine=k ewyEk~A 

Double the coefficient of the square of the unknown. (This is 
now the unknown term.) Keep the coefficient of the first degree 
term as the absolute number. (This is one side.) On the other side, 
add twice the product of the (new) coefficient of the unknown 
and the absolute term to the square of the (new) absolute term. 
Equating the two sides yields the square roots. (Madhyama) 

To explain Sūryadāsa’s method: 
Let ax2 + bx + c = 0 be the given equation. 
Then ax2 + bx = – c. 
Then according to Sūryadāsa, on one side we take 2ax + b; on the 
other we take – 4ac + b2. Then equate the two sides. 

			   ( ) 22 4ax b b ac± + = −

Example: Let the equation be 2x2 – 9x = 18. 
According to Sūryadāsa’s rule, the square root on the unknown 
side is 4x – 9. On the other side, multiply the absolute number 18 
by the coefficient of unknown 4. This is equal to 72. Twice 72 is 144; 
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adding the square of the coefficient of the first degree term of the 
unknown (92). So r.h.s. is 225 and its square root is 15. 

4x – 9 = 15. 
Solving, the value of the unknown x is obtained as 6. 

Interesting Information 
The following is an example about rice, lentils and costs, where 
Sūryadāsa adds some interesting information. 

EXAMPLE 1  
lk/Za r.Mqyekud=k;egks æEes.k ekuk"Vda eqn~xkuka p 
	 ;fn =k;ksn'kferk ,rk of.kd~ dkfd.khA 
vknk;k¿iZ; r.Mqyka'k;qxya eqn~xSdHkkxkfUora f{kça 
	 f{kçHkqtks oztse fg ;r% lkFkkZs¿xzrks ;kL;frAA

If three and a half measures of rice can be had for 1 dramma and 
8 measures of green gram can be had for the same amount, take 
these 13 kākiṇīs, Oh merchant! and give me quickly two parts 
of rice and one part of green gram, for we must make a hasty 
meal and depart, since the traveller (who accompanies me) has 
already gone ahead. 

f{kça HkqufÙkQ bfr f{kçHkqd~ rL; f{kçHkqt%A f{kça uke fefJrkUu i;kZ; 
bfr df'pr~ --- lqÑrh xqtZjns'kfuoklh iqeku~ df'pr~ Jh Ñ".kn'kZukFk±  
}kjdk;k xUrqa çòÙk%A l rq ekxZs {kqR{kkeLRoj;k HkksÙkQqa ekxZoS"kE;Hk;kRlekxesu 
fo'ys"kks ek Hkwr~ bfr O;kdqyhHkwrfpÙkks of.kta osxsu i`PNfr bR;FkZ%A

According to some, kṣipra is a synonym for mixed rice. … Some 
person living in Gujarat on his way to have darśana of Lord Kr̥ṣṇa, 
became hungry and thirsty and the route being unsafe does not 
want to get separated from his co-traveller. Hence he wants the 
merchant to make haste. (Ekavarṇa) 

EXAMPLE 2 

;fn leHkqfo os.kqf}Zf=kikf.k çek.kks x.kd iouosxkr~ ,dns'ks l HkXu%A 
Hkqfo u`ifergLrs"oÄ~x yXua rnxza dFk; dfr"kq ewykns"k HkXu% djs"kqAA

If a bamboo, measuring 32 cubits, and standing upon level 
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ground, is broken at one place by the force of the wind, and the 
tip of the bamboo meets the ground at 16 cubits, tell me dear 
mathematician, at how many cubits from the root is it broken? 

Hkks vax x.kd f}f=kikf.k çek.kks os.kq% leHkqfo iouosxkr~ HkXuks â"V% rnxza 
;fn ewykr~ Hkwifer gLrs"kq yXua rfgZ dfr"kq gLrs"kq v;a bfr ç'ukFkZ%A 
v=k vax bfr lacks/ua ijeçsekLin|ksrukFkZe~A rFkk fo/s¿fi ckydknkS 
Ñr ç'uk;ksxknrks x.kd inEk~A

Dear mathematician, if a bamboo, measuring 32 cubits, and 
standing upon level ground, is broken at one place by the force 
of the wind, and the tip of the bamboo meets the ground at 16 
cubits, tell me at how many cubits from the root is it broken?

This is the meaning. Here the word aṅga is used to denote a lot of 
affection. Then again probably gaṇaka refers to young students (of 
mathematics). (Madhyama) 

Poetic Fancy 
Sūryadāsa goes lyrical while explaining the following example.
Bhāskara has given the following verse as an illustration for 
quadratic equations. Sūryadāsa adds his own information about 
Arjuna. 

EXAMPLE 1 

ikFkZ% d.kZo/k; ekxZ.kx.ka Øq¼ks j.ks lan/s 
	 rL;k/Zsu fuok;Z rr~ 'kjx.ka ewyS% prqfHkZgZ;kUk~A 
'kY;a "kfM~HkjFks"kqfHk% f=kfHkjfiPN=ka èota dkeZqda 
	 fpPNsnkL; f'kj% 'kjs.k dfr rs ;kutZqu% lan/sAA 

The son of Pr̥thā with great anger, took some arrows to kill 
Karṇa in the war. With half the number, he eliminated Karṇa’s 
arrows. With four times the square root of the total number of 
arrows, he struck the horses of the chariot and sent 6 arrows 
against (the charioteer) Śalya. With 3 arrows he struck Karṇa’s 
umbrella, flagmast and bow. With one arrow, he cut off Karṇa’s 
head. How many arrows had he in all? 
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Sūryadāsa comments: 

;ndqykoralfoèoaleqfueuksgalijkuUndUneqdqUnlqUnjinkjfoUnoUnu& 
'kfer'kadykdyadks /u×k~t;ks ,o vfodkjÑr pkid"kZ.k ;ksftr'kjo"kZ.kr% 
Lolsukân;'kY;feo 'kY;a l d.k± {k.kkr~ vo/hr~ bR;FkZ%A

What it means is that Dhanañjaya or Arjuna who bowed to the 
lotus feet of Mukunda belonging to the Yādava clan, … killed 
Śalya who was like a thorn in the heart of his army, and Karṇa 
in a moment. 

In the following example given by Bhāskara, Sūryadāsa imagines 
the joy of the herd of monkeys. 

EXAMPLE 2 

oukUrjkys Iyoxk"VHkkx% laofxZrks oYxfr tkrjkx%A 
iQwRdkjuknçfruknâ"Vk n`"Vk fxjkS }kn'k rs fd;Ur%AA

In a deep dense forest, a number of monkeys equal to the square 
of 1/8th of their total number was chattering away merrily. 
The noise and echo of their shouting were enjoyed by 12 other 
monkeys on the hill. What was the total number of monkeys? 

v;eFkZ% fuforjr#e#ey;kUnksfyrekSfy'kkyekyrekyrkypyPNk•k& 
e`xk"VHkkx% ijLijkuqjkx dksykgyfdfyfdyk ,o larq"VksoykfrjHklr;k 
u`R;frA rFkk g"kkZsRd"kZ'kh"kZpkyueq•fodkjlhRdkjdkfjrf'krn'kZuijLij& 
uknfouksneksnk;ekuk% di;% ioZrs p }kn'k n`"Vk bfrA

Sūryadāsa adds that one-eighth of the herd of monkeys was 
dancing … out of love for one another, filled with joy, making a 
lot of noise. This noise and echo of their shouting were enjoyed 
by 12 other monkeys on the hill. (Madhyama) 

Other Authors 
Sūryadāsa mentions several authors before his time. Some of them 
are familiar to us. 

In at least a couple of instances, Sūryadāsa quotes the 
Amarakośa of Amarasiṁha (sixth century ce).  
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ØqÄ~ ØkSapks¿Fk cd% dad% iq"djkÞoLrq lkjl%A 
dksd% pØ'pØokdks jFkkaxkÞo;uked%AA bR;ejksÙkQs%A

The above quotation enumerates different kinds of storks and 
cranes. 

pØokya rq e.Myfefr vejksÙkQs%A

Amara (kosā) says cakravāla means a circle. 

Sūryadāsa pays homage to Brahmagupta (son of Jiṣṇu, seventh 
century ce) and Caturvedācārya (Pr̥thūdakaswāmi, commentator 
of the Brāhmasphuṭasiddhānta, seventh century ce). These earlier 
authors speak of a type (of equation) called madhyamāharaṇa 
(quadratic equations).

vk|x.kdkpk;Zft".kqtprqoZsnk|k eè;ekgj.kk[;a Hksna onfr bR;FkZ%A
						                (Madhyama)

Mention of Own Work 
In some places Sūryadāsa mentions his own work. These are not 
available now: 

rr~ dFkfefr ç'ukFkZ%A vL;ksÙkja vLekfHk% xf.krjgL;s lE;d~ fu:firefLrA

How is it possible is the question. The answer has been well 
explained by me in my own work Gaṇitarahasya. 

Mention of Śulbasūtras Theorem 

;rks xzgxf.krs f=kç'uksÙkQçFkek{k{ks=kNk;k }kn'kkÄ~xqy'kadksHkZqtdksfV:iRosu 
rRÑR;ksiZna d.kZ bfr çflf¼% A

Because in the Grahagaṇita, in the chapter on the Three Questions, 
while dealing with the first latitudinal triangle, since the twelve 
aṅgula gnomon and the shadow are taking the place of the 
altitude and the base, it is well known that the square root of 
the sum of their squares is the hypotenuse.  

This is the well-known result from the Śulbasūtras, now famous 
as the Pythagoras Theorem. 
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Conclusion 
It is evident that the author Sūryadāsa is not only a mathematician 
but also a versatile poet. He has given some beautiful descriptions 
while commenting on some examples. These portions both in verse 
and prose reveal his erudition and mathematical skills. 
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Edition of Manuscript 
Gaṇitāmr̥talaharī of Rāmakr̥ṣṇa

V. Ramakalyani

Abstract: Editing a Sanskrit mathematics manuscript is a 
challenge as it requires good vocabulary of technical words. 
Critical edition takes into account all the available manuscripts 
of the same text. The critical edition of the commentary on the 
Līlāvatī, viz. the Gaṇitāmr̥talaharī of Rāmakr̥ṣṇa, is taken up as 
a project by the author. Some of the salient features noticed in 
this manuscript will be discussed in this paper. 

Keywords: Critical edition, manuscript, author, commentary.

Introduction
A critical edition or textual criticism is that which restores an 
author’s writing to its authentic form for the sake of publication. 
It seeks to restore, or reconstruct, the text, as far as possible, to the 
form in which it could have been originally made by the author. 
It is a criticism, or discussion, about the text itself, i.e. the verbal 
expression or wording of the composition.

The critical edition of the Gaṇitāmr̥talaharī (GL) of Rāmakr̥ṣṇa, a 
commentary on the Līlāvatī of Bhāskara II, was undertaken in 2019 
as a project for National Mission for Manuscripts, since this has 
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not been edited and published.1 About sixty-eight commentaries 
on the Līlāvatī are listed out in catalogues. But a few of them, 
viz. the Buddhivilāsinī of Gaṇeśa Daivajña, the Līlāvatī-vivaraṇa of 
Mahīdhara and the Kriyākramakarī of Śaṅkara and Nārāyaṇa are 
published till now. Each commentary conveys Bhāskara’s ideas in 
its unique way and hence each one of them is important. When a 
manuscript is edited and published, the original text will be made 
available to all and hence editing of manuscripts is the need of the 
hour to bring out the hidden knowledge in the manuscripts to light.

The Material Required for Critical Edition 
The material is of two types: primary and secondary. Primary 
material or critical apparatus consists of all the manuscripts of 
the work that are available. At first, all the available manuscripts 
present in different libraries are to be collected, which is not an 
easy task. At present, photocopy or digitized copy is available 
which is same as the manuscript. The secondary materials are 
those which are supportive of the edition. Manuscripts are of two 
kinds: autograph and copies; autograph is that which is written 
in the author’s own hand and copies are reproductions of the 
original manuscript. It is difficult to get the autographs which were 
written centuries before. The handwritten copies in the manuscript 
libraries usually consist scribal errors and hence a few manuscripts 
are to be compared and collated for the critical edition.

Recording the Materials
The introduction to the edition consists of a list of the entire 
critical apparatus which was consulted and collated, manuscripts 
accepted or rejected and the manuscripts which have been collated 
only in part, together with the reasons.

The manuscripts of the Gaṇitāmr̥talaharī were collected from 
India Office, London – 2804; Bhandarkar Oriental Research 
Institute, Pune – BORI.281 of viś (i) Dāhilakṣmī XXXVIII.2; 

	 1	 The book is published now – Gaṇitāmr̥talaharī of Rāmakr̥ṣṇa Daivajña, 
ed. V. Ramakalyani, New Delhi: National Mission for Manuscripts 
and D.K. Printworld, 2021.
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The Royal Asiatic Society of Mumbai – BBRAS.271; Rajasthan 
Oriental Research Institute, Jodhpur – RORI.IV.2809, XVI.2897-
98, XXV.3959 and The Oriental Institute, Baroda II.12688 (inc.). 
The secondary material collected like ancient commentaries and 
anthologies are also recorded.

Qualifications Necessary for the Editor
Expert knowledge of the language in which the work is composed 
and the subject (Sanskrit and mathematics in this context) dealt 
with by the text is necessary for the editor. Knowledge of words 
employed in a secondary sense special to a particular discipline, 
technical terms of the subject and comprehension of the spirit of 
the author’s entire composition are important for the editor. For 
example, generally mukha means “face”. In arithmetic progression 
mukha means “the first term”; in geometry it is “the side of a 
figure”. The synonyms of mukha such as vadana and vaktra are 
also employed in the place of mukha. Moreover, the editor needs 
to have the capacity to translate the text into English or the local 
language and understand the real import so that it is possible to 
identify the correct reading, when variant readings are seen in 
different manuscripts.

Deciding the Place, Family and Date of the Author
It is necessary for the author to study the introductory pages, 
colophon and the concluding part in the last page of the 
manuscript. The information about the author, his place of birth 
or stay, his teacher, lineage or his parents may be available in the 
introductory pages along with invocation. The information about 
the date of writing the work and also the details about the author’s 
place and parents may be seen at the last page.

The manuscript begins as follows: 
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The above page is edited and given here:

Jh x.ks'kk; ue% A 

u`flagikniadta uekfe flf¼nk;da A
xqjks'p ikniadta Hktkfe 'kkL=kdkj.ke~ AAûAA 

;nh;a ;¼kea fdefi txrka laHkodja
	 •ok;qLFka ofÉtyd.kegkHkw/jxrEk~A
LoHkÙkQkuka HkO;a fn'kfr futlk;qT;foHkoa 
	 lnk oans es r};deys larrxrEk~ AAüAA 

lákæsfuZdVfLFkrs tyiqjs tkr% dokaoksnjs 
	 eNsækfUr;qxçlkneqfnr% JhlkseukFk% lq/h% A
rRiknkacqtlsouSdfujr% JhjkeÑ".kkfHk/%
	 DqQoZs ln~xf.krs fg HkkLdjÑrs Vhdka eqns rf}nkEk~ AAýAA

=kqVÔkfnçy;kardkydyukekuçHksn%ØekPpkjk'p|qlnka f}/k p xf.kr& 
feRik|qÙkQØes.k fl¼kUrf'kjksef.kdrZ`HkkLdjkpk;Z% iknkf/dkjkuUrja f}/k 
xf.kra oÙkQqdke% çFkexzgxf.krksithO;ka O;ÙkQxf.krifjikVha foo{kqjknkS 
rfUufoZ/`lekfIrdker;kÑrx.ks'kueLdkj:ia ekaxY;a f'k";f'k{kk;S 
'kknZwyfoØhfMro`Ùksu fufoZ?ua fpdhf"kZra laço`R;a tkuhrs –

çhfra HkfÙkQtuL; ;ks tu;rs fo?ua fofu?uu~
   Le`raLra o`ankjdo`Unoafnrina uRok eraxkuue~A
ikVha l xf.krL;ofpj2 prqjçhfrçnka çLiQqVka 
   laf{kIrk{kjdkseykeyinSykZfyR;yhykorhe~ AA ûAA

	 2	 In the edited text of Līlāvatī, ed. Apte 1937, it is ofPe.
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vL;kFkZ% A lr% Lo:is.k fo|ekuL; O;ÙkQxf.krL; la[;klacaf/dyuk& 
fndeZ.k% ikVha ifjikVha bfr dÙkZO;rka ofPe fØ;kcykngfefr d=kkZ{ksi% 
uuq iwoZikVhuka lRokfn;a O;FkZsR;r% ikVha fof'kuf"V çLiQqVa vfrlqxesR;FkZ% 
iwoZik|LRofrdfB.kk bfr A

Here, after saluting Śrī Gaṇeśa, the author Rāmakr̥ṣṇa salutes the 
lotus feet of Śrī Nr̥siṁha, who gives success and his guru who is the 
cause of all knowledge. The author Rāmakr̥ṣṇa introduces himself 
as the one who is serving the lotus feet of his guru Śrī Somanātha 
and living at Jalapura near Sahyādri Ranges (Western Ghāṭs). 
He also says that the author of Siddhānta Śiromaṇi, i.e. Bhāskara 
II, after Pādādhikāra, wishing to write mathematics as two parts, 
wrote the Vyaktagaṇita which is basis for the Grahagaṇita and he 
is writing the commentary for this Vyaktagaṇita. 

The manuscript ends as follows:

The edited text is as follows:

bfr HkkLdjh;yhykorhlaKkikVkè;k;% lekIr% A 

	 nSoKo;Zu`gjs% lqry{e.kL;
JhjkeÑ".k bfr uker;kfLr iq=k% A

	 JhlkseukFk HktrkRifjyC/cks/ 
Jhfo'olw;Z xq#HkfÙkQjrks furkare~ AAûAA

	 lks;a HkkLdjçksÙkQikfVxf.krs l|qfÙkQ;qÙkQs¿djksêðhdkl(n~)xf.krkèrL;ygjha
  rRokFkZcks/çnke~ A
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uankHkzrZqegh ûüöú fers (unkHkzerq ûöúù ç¹eºfefr)3 'kdxrs o"kZs  
lgL;kflrs i{ks loZfrFkkS lnkf'koiR;nkPpkFk± fg Hkw;kRlnk AA 

(;nkFk±PpkfgHkwikRlnk)AAüAA

bfrJhu`flagnSoKlqr ¹nSoKkRety{e.kº fl¼karfonSoKjkeÑ".kfojfprk 
yhykorho`fÙkxZf.krke`rygjh laiw.kkZA lekIrk AA

Here, it is stated that Rāmakr̥ṣṇa was the son of Lakṣmaṇa. He has 
received knowledge from Śrī Somanātha, who is Śrī Viśvasūrya. 
This is written in the year nandābhrartuma, i.e. nanda – 9, abhra – 0, 
r̥tu – 6 and ma (moon) – 1; which gives Śaka year 1609; but in three 
manuscripts it is given in numeral as Śaka 1260 which means 1338 
ce. The date of the work is to be decided with other evidences.

The Gaṇitāmr̥talaharī does not contain the upapattis like the 
Buddhivilāsinī (1545 ce) or the Kriyākarmakarī (1534-58 ce). The 
later commentaries contain elaborate explanations and proofs. 
This leads one to the guess that the Gaṇitāmr̥talaharī, which has 
simple explanations, could be an earlier commentary. Rāmakr̥ṣṇa 
has quoted, in his Gaṇitāmr̥talaharī, from the works of the 
mathematicians Gaṅgādhara (1434 ce), Gaṇeśa Daivajña (1545 ce), 
Kr̥ṣṇa Daivajña (1601 ce) and Munīśvara (1603 ce). From this it can 
be concluded that as denoted in numerals in three manuscripts 
Rāmakr̥ṣṇa does not belong to Śaka 1260 (1338 ce) and he must 
be later than 1603 ce. The manuscripts from Rajasthan Oriental 
Research Institute, give Rāmakr̥ṣṇa’s date as Śaka 1609 in numerals 
also. So his date can be confirmed as 1687 ce.

Fixing the Definitive Reading of the Text 
By collating the collected manuscripts, i.e. comparing them, it is 
to be decided which among the variant readings is the possible 
correct one. The principles to be followed: obvious mistakes of 
the scribe can be corrected; it is possible that older copy is closer 
to the original; a reading that violates the rule of grammar can be 
rejected; internal evidence, i.e. the method in general by which 
the author deals with his topic and the overall manner in which 
he expresses himself; as this is a mathematics text, the correctness 

	 3	 The words in the parentheses are variant readings.
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of calculations can be taken into account to decide the correctness 
of the reading.

Let us consider an example of bhuja-koṭi-karṇa nyāya:

Following the bhuja-koṭi-karṇa nyāya (known as Pythagoras 
Theorem now) a rule is given to find the base and hypotenuse 
separately when sum of the base and hypotenuse and altitude are 
known. A copy of the page from one manuscript is given here. The 
variant readings are given in the brackets in the edited text below.

The edited text is as follows:

LrEHkL; oxkZs¿fgfcykUrjs.k HkÙkQ% iQya O;kyfcykUrjkykRk~A
'kksè;a rn/ZçkferS% djS% L;kfn~cykxzrks O;kydykfi;ksx%AA

vL;kFk Z% LraHkL; oxZ vfgfcykUrjs.k liZçFken'kZuLFkku4 
(liZçFkn'kZuLFkkus] liZLFkku)5 fcy;ksjarjekusu HkÙkQ iQya O;kyfcykarjkykr~ 
liZçFkeLFkkufcy;ksjUrja ekukr~ ghua dk;Ze~ A vof'k"Vdk/Z (vfof'k"Vka 
dk;Z) çferSgZLrS% ÑRok fcyLFkkuekjH;Sr¼Lrkarjs liZe;wj;ks;kZsx L;kr~A 
mnkgj.k ç'ua (çL=k)'kknZwyfoØhfMro`Ùksukg –

vfLr LraHkrys fcya rnqifj ØhMkf'k•.Mh fLFkr%
  LraHks gLruoksfPNªrs f=kxqf.krs LraHkçek.kkUrjs A
n`"V~ok¿fga fcyekoztUreirfÙk;ZDl rL;ksifj 
  f{kça czwfg r;ksfcZykRdfrdjS% lka;su (fcykRdferslkE;ksu) xR;ksrZqfr%AA

vL;kFkZ% µ LraHkrys ewys fcyefLr A rnqijs rL; fcyksifj 

	 4 	Underlined text is the preferred reading.
	 5	 Texts in the brackets are variant reading.
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gLruoksfPNªrs LraHks ØhMkFk± f'k•.Mh e;wj% fLFkr% A f=kxqf.krs LokJ;h 
(LokJ•h] LokJ;h) HkqgLrLraHkçek.ka rRçek.kkFk± fr;Zd~ d.kZxR;k l% 
virr~ l ,o efr gs x.kdr;ks e;wjliZ;ks% xR;ks% lkE;su ler;k 
fcykRdfrferS fd;fUerS% (fd;UesrS] fd;fUerS%)UgLrS;Zqfrtkrk rka 'kh?kza 
on A mnkgj.ks U;kl% A v=k LraHk% ù vL; oxZ% øû vfgfcykUrjs.k 
ü÷ HkÙkQa tkra iQya ý A bna ý O;kyfcykUrjkykr~ ü÷ 'kksf/ra üþ A 
vL;k/± ûü ,rRçferS% djSfcZykxzrO;ky dykfi;ksx% ûü A

In the above, liZçFken'kZuLFkku is the definite reading, as “the position 
of the snake that is first seen” is most suitable and the same is 
given in the next line of the text; vof'k"Vdk/Z is the decided reading 
as according to the rule, the expression finally is to be divided by 
2 [see (1)] r;ksfcZykRdfrdjS% lka;su is the reading accepted in the texts 
already published and also is meaningful. LokJ;h, fd;fUerS% are the 
suitable meaningful readings.

In the edited text above, the rule and example are given for 
finding the base and hypotenuse separately, when sum of base 
and hypotenuse and altitude are known. 

The question in Līlāvatī 152: 

A snake’s hole is at the foot of a pillar, nine cubits high; a peacock 
is on its top. Seeing a snake at a distance of thrice the pillar 
gliding towards his hole, he pounces obliquely upon him. Say 
quickly at how many cubits from the snake’s hole they meet, 
both proceeding an equal distance’.	     – Colebrooke 1993: 97

In the fig. 4.1 below, the distance of meeting point C from hole B 
is b; the distance between hole and first position of snake, BD is b 
+ h; height of pillar BA is a; then,
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Fig. 4.1 is drawn according to the text:
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fig. 4.1: Peacock-snack problem

Some Special Features Noted
SIXFOLD ALGEBRA

Bhāskara poses a problem (Līlāvatī 62), “Find two quantities x and 
y such that x2 ± y2 − 1 is also a square”. Then he says that those 
who know the six established units in algebra, in spite of being 
experts, find this difficult like the dull headed. 

The page from the manuscript is given here:

The edited text is as follows:

	 jk';ks;Z;ks% Ñfrfo;ksx;qrh fujsds ewyçns çon rkS ee fe=k ;=kA
	 fDy';fUr chtxf.krs iVoks¿fi ew<k% "kks<ksÙkQchtxf.kra ifjHkko;Ur%AA

vL;kFkZ% ;;ks jk';ks% Ñfrfo;ksxoxkZUrja oxZ;ksx'p --- fujsdks jkf'k 
ewyçnks Hkor% A gs fe=k rkS jk'kh ee on içd"kZs.k dFk;sr~ ;=k 
;;ksjku;ufo"k;d chtxf.krs chtxf.krdeZf.k "kks<ksÙkQchtxf.kra  
"kM~HksnkReda iwokZpk;ZS#ÙkQa chtksi;ksfxuks chtlacU/kr~ chtRoa rnsda  
,do.kZrUeè;ekgj.ks HksnkUukesdo.kZchta f}fo/a vusdo.kZrUeè;&  
ekgj.kHkkforHksn=k;kRedRosukusdo.kZchte=k f=kfo/esoa "kM~HksnkReda 
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chta] dsfpPprqfoZ/a çfl¼a dqêðdoxZçÑfr p chtHksnk --- osoa 
"kfM~o/a chtfeR;kgq% vusdladyukfn oxZewykars "kfM~o/chtfeR;kgq%  
ifjr% learkRHkko% ;suks¿è;;uO;frjsdsu chtkfHkKk vfi 'k{kk 
rnufHkKkuka dk okrkZ iV'o u rq iVo% ;Fkk ckydk LokfHkera dk rq 
eefHkKLrFkkfDy';fUr f•|fUr bR;FkZ%A

In the second line of the Līlāvatī given above, "kks<ksÙkQchtxf.kra (sixfold 
algebra) is explained here, which is not seen in the other known 
commentaries. ,do.kZchta f}fo/a – Equations with one variable: 
linear and quadratic (madhyamāharaṇa); vusdo.kZchte=k f=kfo/e – 
Equations with more than one variable: linear, quadratic and 
indeterminate; Hkkfore~ – Equations with product of variables. Thus, 
there are six important units of algebra and this is according to the 
earlier ācāryas as he puts it “"kM~HksnkReda iwokZpk;ZS#ÙkQa”.

TABLE FOR COMBINATIONS

The Līlāvatī verse to find the total combinations of letters in a metre:

çLrkjs fe=k xk;=;k% L;q% ikns O;ÙkQ;% dfrA
,dkfnxqjo'pk¿¿'kq dfr dR;qP;rka i`Fkd~ AA

Friend! Tell me quickly in a Gāyatrī metre how many 
combinations of one, two, etc. of long vowels are there in a line? 
How many there will be separately.

The manuscript reads as follows:

The edited version of the above page is given:

prq'pj.kkdjla[;kdkr~ prqfo±'kR;adku~ laLFkkI; ,dk|SdksÙkjk vadk% 
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O;LrkA ØeL;'p LFkkfirk ,rsij iwoZs.klaxq.;LrRijLrRijs.k psfrA           
laxq.kØefLFkrka dsuafoHkR; tkrk% ,"kkes"kfnHksnkØes.k ,d% lo± y?kqHksnk%A 
,rs"kka ;ksxs tkrk'prqfo±'kR;k{kjxk;=khHksnk% ûö÷÷÷üûö

û	 üþ	 ûö	 ù 	  24 = 24C1

ü	 ü÷ö	 û÷	 ø 	 24 × 23 ÷ (1 × 2) = 276 = 24C2

ý	(üüþ) üúüþ	 ûø	 ÷ 	24 × 23 × 22 ÷ (1 × 2 × 3) = 2024 = 24C3

þ	 ûúöüö	 ûù	 ö	  2024 × 21/4 = 10626 = 24C4

ÿ	 þüÿúþ	 üú	 ÿ	 24C5

ö	 ûýþÿùö	 üû	 þ	 24C6

÷	 ýþöûúþ	 üü	 ý	 24C7

ø	 ÷ýÿþ÷ü	 üý	 ü	 24C8

ù	 üýú÷ÿúþ	 üþ	 û	 24C9

ûú	 ûùöûüÿö	 û	 üþ	 24C10

ûû	 üþùöûþþ	 ü	 üý	 24C11

ûü	 ü÷úþûÿö	 ý	 üü	 24C12

ûý	 üþùöûþþ	 þ	 üû	 24C13

ûþ	 ûùöûüÿö	 ÿ	 üú	 24C14

ûÿ	 ûýú÷ÿúþ	 ö	 ûù	 24C15

ûö	 ÷üÿþ÷ú	 ÷	 ûø	 24C16

û÷	 ýþöûúþ	 ø	 û÷	 24C17

ûø	 ûýþÿùö	 ù	 ûö	 24C18

ûù	 ýþüÿúþ	 ûú	 ûÿ	 24C19

üú	 ûúöüö	 ûû	 ûþ	 24C20

üû	 üúüþ	 ûü	 ûý	 24C21

üü	 ü÷ö	 ûý	 ûü	 24C22

üý	 üþ	 ûþ	 ûû	 24C23

üþ	 û	 ûÿ	 ûú	 24C24

Normally, Gāyatrī metre has four lines of six syllables each. 
Bhāskara in his Vāsana says “the combinations for 4 lines of 24 
letters, taking the various combinations and adding them, the 
total number of combinations become 16,777,216 (which is = 644)”.
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Here Rāmakr̥ṣṇa gives a table representing combinations 
obtained when choosing 1, 2, …, 24 syllables, which are respectively 
24C1, 24C2, …, 24C24.

There are more special features in the Gaṇitāmr̥talaharī which 
can be known from the text itself.
Conclusion
Critical edition of a Sanskrit text, that too a technical text like 
mathematics, is a challenging work. Procuring the manuscripts 
from different libraries is another challenge. The National Mission 
for Manuscripts is encouraging the scholars to edit the unpublished 
manuscripts. More organizations must come forward to meet this 
purpose so that the unknown treasure of our land can be made 
known to the world. Apart from mathematics, there are quite a 
lot of Indian astronomical manuscripts in the libraries all over 
the world. The youngsters should come forward to study Indian 
astronomy and mathematics to unravel the unstudied old texts.
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Gaṇakānanda
Indian Astronomical Table
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Abstract: In this paper we present some salient features of a 
prominent handbook and tables belonging to the saura-pakṣa, 
based on the popular Indian astronomical treatise Sūrya-
Siddhānta (SS).
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The Gaṇakānanda is a popular text in Andhra and Karnataka 
regions. The epochal date of the text is 16 March 1447 and is based 
on the Sūrya-Siddhanta. The Telugu translation by Vella Lakshmi 
Nrusimha Sastrigaru of Machlipatnam is taken up. It is a handbook 
(karaṇa text) comprising of textual part and astronomical tables. 
The famous Andhra astronomer Sūrya, son of Bālāditya, composed 
his famous karaṇa-cum-tables, called the Gaṇakānanda. His more 
illustrious protégé Yalaya composed his exhaustive commentary 
Kalpavallī on the well-known treatise the Sūrya-Siddhānta.

Yalaya belonged to the Kāśyapa gotra and his genealogy was 
as follows. Kalpa Yajvā (great grandfather) – Yalaya (grandfather) 
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– Śrīdhara (father) – Yalaya. Yalaya quotes from his preceptors 
three works, viz. (i) the Gaṇakānanda composed in 1447 ce, (ii) the 
Daivajñābharaṇa, and (iii) the Daivajñābhūṣana. Yalaya’s residence 
was a small town to the north of Addanki (latitude 15°49 N, 
longitude 80°01 E) called Skandasomeśvara in Andhra Pradesh. 
This home town of Yalaya lay towards the āgneya (south-east) of 
Śrīśaila, the famous pilgrimage centre.    

Interestingly, Yalaya records some contemporary astronomical 
events. A few of them are the following:
	 i.	 Lunar eclipse on Saturday, Phālguna, pūrṇima, Śaka 1407, 

corresponding to 18 February 1486 ce.
	 ii.	 Solar eclipse on Friday, Phālguna amāvāsyā, Śaka 1389, i.e. 

25 March 1468 ce.
	 iii.	 Solar eclipse on Friday, Bhādrapada amāvāsyā, Śaka 1407, 

i.e. 9 September 1485 ce, visible at his native place.
	 iv.	 Jupiter – Moon conjunction on Saturday, Āṣādha pūrṇimā, 

Śaka 1408, i.e. 17 June 1486 ce.
	 v.	 Commencement of adhika (intercalary) Śāvaṇa, śukla 

pratipadā, Śaka 1408, i.e. Sunday, 2 July 1486 ce.
I have verified the veracity of the above recordings by using 

the software prepared by me based on modern computations.

Procedure to Find Dyugaṇa for the Date 18-02-1486 
according to the Gaṇakānanda Tables
In the text Gaṇakānanda, he considers dyugaṇa instead of ahargaṇa 
(heap of days from a chosen fixed epoch) for any given date, which 
is a very smaller unit compared to ahargaṇa. To find dyugaṇa for any 
given Christian day first find the Kali days from the Kali beginning 
and then subtract the Kali days of the epoch of Gaṇakānanda, 16 
March 1447 ce. Now, 

Kali ahargaṇa for the date 18-02-1486 = 1,675,402
Kali ahargaṇa for the epoch 16-03-1447 = 1,661,183

                Therefore, dyugaṇa = 14,219.



|  59Gaṇakānanda

To Find the mean positions of the heavenly bodies, the Gaṇakānanda 
gives the following procedures.
Multiply dyugaṇa (ahargaṇa – the number of days elapsed since the 
chosen fixed epoch) by 600 and divide by 16,893. The result will 
be in revolutions, etc. of the moon. Since the text is based on the 
Sūrya-Siddhānta, the number of revolutions of moon in a mahāyuga 
(MY) is 57,753,336 and the civil days in MY is 1,577,917,828.
	 i.	 Mean daily motion of the moon 57753336

1577917828
= . Hence mean 

position of the moon is given by
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	 ii.	 Dyugaṇa divided by 687 gives the revolutions, etc. of Kuja 
(dharaṇīsutaḥ). Mean Kuja = 687

A .
		  According to the Sūrya-Siddhānta mean Kuja = 
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	 Mean Kuja = A
687

 (one revolution of Kuja = 687 days).

	 iii.	 Multiply dyugaṇa by 33 and divide by 2903 to give 
revolutions, etc. of the Budha śīghrocca.

		  Budha śīghra (śīghrocca) = A
2903
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	 iv.	 Mean Guru: Multiply dyugaṇa by 10 and divide by 43323 to 
give revolutions of Guru.

		  Mean Guru = 
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	 v.	 Mean Śukra śīghrocca = 
Dyugana
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	 vi.	  Mean Śani =M Dyugana
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	 vii.	 Moon’s apogee or moon’s mandocca = Dyugana

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	 viii.	 Moon’s node (Rāhu) = Dyugana

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 revolutions = 0°59'81°.58''.

		  2. MDM of the moon = A��
�
�

�
�
�

600
16393

 = 79°34'52°84''.

		  3. The Telugu commentator Chella Lakshmi Narasimha 
Sastri has given the mean positions for the sun and the moon 
for his ephocal date 6 June 1856 as follows:

Mean Ravi 	                        53°20'38''	 	   For 6 June 1856	 	
Epochal mean Ravi	        346°52'03'' 	   Mean positions from 12 noon
16 March 1447	                 66°28'35''		    Motion from the epoch to the 
			     given date
Mean moon 	                    90°30'0''		    Positon for 6 June 1856
Epochal mean moon	      338°46'33''
16 March 1447	          111°43'27"	   Motion from the epoch to the 
				      given date

	 4.	 I have compared the mean positions of the heavenly bodies 
for the epoch of Gaṇakānanda (16 March 1447 noon) with that 
of Grahalāghavam (1520 ce), the Sūrya-Siddhānta and modern 
tropical values. It is interesting to note that the values 
obtained according to the various texts are comparable with 
the modern values (Table 5.1).
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Table 5.1: Mean Epochal Positions (16 March 1447 Noon)

Body Mean Position 
Acc. to GNK 
for Mid-noon

Acc. to SS Acc. to GL Acc. to Modern
Tropical 
(12h27m)

Ravi 11R 16°52'3'' 11R 16°52'3'' 11R 16°51'52'' 0R 2°51'52''
Candra 11R 8°46'33'' 11R 8°46'33'' 11R 8°36'41'' 11R 23°51'52''
Kuja 0R 12°20'46'' 0R 12°20'45'' 0R 13°13'29'' 0R 27°27'56''
Budha 7R 1°12'44'' 7R 1°12'43'' 7R 12°39'51'' 7R 06°51'51''
Guru 5R 8°16'20'' 5R 8°16'22' 5R 6°27'36'' 5R 26°27'29''
Śukra 11R 9°9'21'' 11R 9°9'23'' 11R 9°20'1'' 11R 20°11'52''
Śani 3R 18°49'36'' 3R 18°49'35'' 3R 23°34''36'' 4R 12°35'34''
Candrocca 2R 17°27'12'' 2R 17°23'16'' 2R 17°43'39'' 3R 1°22'20''
Rāhu 0R 2°30'0'' 0R 2°30'21'' 0R 0°51'56'' 0R 16°12'58''
	
	

Note: The last column has the tropical mean longitudes tabulated. 
For comparison with sidereal longitudes ayanāṁśa (precession of 
equinox) has to be subtracted. Since the text is based on the Sūrya-
Siddhānta, ayanāṁśa according to the Sūrya-Siddhānta is used. 
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Procedure to Compute True Positions of 
the Sun, the Moon and the Planets
To find the mean positions of the sun, the moon and the planets, 
the method explained in the Gaṇakānanda is that the dyugaṇa is 
multiplied by guṇakāra saṅkhye (multiplier) and later divide the 
resulting product by the bhāgahāra saṅkhye (divider) continuously 
by multiplying the remainder at each case by 12, later by 30 and 
then by 60 and 60. Then the mean planet is the quotient obtained 
in each case after it is multiplied by 12. Table 5.2 gives the list of 
guṇakāra saṅkhye and bhāgahāra saṅkhye of heavenly bodies. 
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Table 5.2: Guṇakāra Saṅkhye and Bhāgahāra Saṅkhye 
of Heavenly Bodies

	 Bodies 	 Guṇakāra Saṅkhye 	 Bhāgahāra Saṅkhye
	 Sun 		  31 		  11323
	 Moon 		  600 		  16393
	 Moon’s apogee (candrocca) 	 10 		  32321
	 Moon’s ascending node (Rāhu) 	 1 		  6794
	 Mars 		  1		  6794
	 Mercury 		  33 		  2913
	 Jupiter 		  10 		  43323
	 Venus 		  10 		  2247
	 Saturn 		  1 		  10766

MEAN AND TRUE LONGITUDE OF 
THE SUN FOR THE DATE 18-02-1486

Dyugaṇa for the given date 14219 is multiplied by guṇakāra saṅkhye 
31, which gives 440789. Now dividing it by bhāgahāra saṅkhye 
11323, it gives 38 as quotient and 10515 as remainder. Multiply 
the remainder 10515 by 12 and then divide it by bhāgahāra saṅkhye, 
quotient is 11 and remainder is 1627. Again multiply the remainder 
1627 by 30 and divide it by bhāgahāra saṅkhye, quotient is 4 and 
remainder is 3518. Then successively multiply the remainders by 60 
and find the quotients and remainders in each case, which results 
in quotient as 18 and remainder 7266 in one case and quotient as 
38 and remainder 5686 in an other case. The first quotient 38 is the 
difference between the given year and the year of epoch in case of 
the sun is called dhruvābda, leaving this value consider the other 
quotients. Now the quotients in all cases form 11s4º18'38''.

Adding epochal value to this results to mean sun 
= 11s4º18'38'' + 11s16º52'07'' = 10s21º10'45''.
Therefore, 
mean sun = 10s21º10'45'' = 321º10'45''.
A new correction, called triguṇābda correction, is applied to 

mean body; according to this correction, the dhruvābda is multiplied 
by 3 and then divided that number by triguṇābda bhāgahāra saṅkhye



|  63Gaṇakānanda

Table 5.3: Triguṇābda Bhāgahāra Saṅkhye

Bodies 		      Triguṇābda  
			                Bhāgahāra Saṅkhye
Sun 			     4399
Moon 			     2272
Mars 			     4297
Mercury 			   33239
Jupiter 			   20734
Venus 			       804
Saturn 			    11653
Moon’s apogee			    33674
Moon’s ascending node 			      2634

successively by multiplying the remainders by 60. The triguṇābda 
bhāgahāra saṅkhye for each heavenly body is listed in Table 5.3.

According to triguṇābda correction, the dhruvābda 38 multiplied 
by 3 gives 114, divide this number by triguṇābda bhāgahāra saṅkhye 
of the sun 4399 successively by multiplying the remainders by 60. 
Which gives the quotients as 0, 1, 33 in successive cases, so 0º1'33'' 
is the triguṇābda correction for the mean sun, which has to be 
subtracted from the mean sun.

Mean sun – triguṇābda phala = 321º10'45'' – 0º1'33'' = 321º09'12''.
According to the Gaṇakānanda tables, the mandoccas of the sun 

and the five planets for the epoch are listed in Table 5.4.

Table 5.4: Mandocca’s of Heavenly Bodies
Bodies 	               Mandoccas 	            Mandocca Correction 
			                  Bhāgahāra Saṅkhye
Sun 	               2s17º16'36'' 		  518
Mars 	               4s10º02'20'' 		  980
Mercury 	               7s10º27'33'' 		  544
Jupiter 	               5s21º20'24'' 		  222
Venus 	               2s19º51'12'' 		  374
Saturn 	               7s26º37'32'' 		  5128
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The mandocca correction to the given year is done to the 
dhruvābda 38 by dividing it by bhāgahāra saṅkhye 518 given in the 
above table for mandocca correction of the sun twice; by multiplying 
the remainder by 60, it gives 0 and 4 as the quotients in two cases, 
which is 0'4'', by adding this to the epochal mandocca of the sun, 
mandocca for the given year is obtained, i.e. mandocca of the sun 
for the given year = 2s17º16'36'' + 0'4'' = 2s17º16'40''.

To find the true sun, consider manda kendra = mandocca – 
triguṇābda corrected mean sun

mk  = 77º16'40'' – 321º09'12'' + 360º
	 = 116º07'28'' < 180º

Therefore, 
bhujā of mk = 116º07'28'' – 90º = 26º07'28''. 
From manda padakāntara table of the sun, mandaphala for 26º = 

58'0'' for the difference 07'28'' = difference × antara from the table
		  = 07'28'' × 1'30'' = 0'8'' 
Thus the mandaphala = 58'0'' + 0'8'' = 0º58'8"

fig. 5.1: Ravi mandapadaka table, a folio from 
Gaṇakānanda manuscript



|  65Gaṇakānanda

Since mk < 180º, true sun = triguṇābda corrected mean sun + 
mandaphala
			          = 321º09'12'' + 0º58'8''.

True longitude of the sun = 322º8'20" for the mid-noon of 
18-02-1486.

MEAN AND TRUE LONGITUDE OF THE 
MOON FOR THE DATE 18-02-1486 

To find the mean moon, dyugaṇa of the given date 14129 is 
multiplied by guṇakāra saṅkhye 600, which gives 8531400. Now 
dividing it by bhāgahāra saṅkhye 16393, it gives 520 as quotient 
and 7040 as remainder. Multiply the remainder 7040 by 12 and 
then divide it by bhāgahāra saṅkhye, quotient is 5 and remainder 
is 2515. Again multiply the remainder 2515 by 30 and divide it 
by bhāgahāra saṅkhye, quotient is 4 and remainder is 9878. Then 
successively multiply the remainders by 60 and find the quotients 
and remainders in each case, which results in quotient = 36 and 
remainder = 2532 in one case and quotient = 9 and remainder = 
4382 in the other case. Neglecting the quotient obtained in the 
first case, the remaining quotients form = 5s4º36'9''. To this result 
adding epochal value, mean moon can be obtained.
		  Mean moon = 5s4º36'9'' + 11s08º46'33''
			           = 4s13º22'42''.
After finding the mean moon the triguṇābda correction is applied. 
The dhruvābda 38 is multiplied by 3 gives 114; dividing this number 
by triguṇābda bhāgahāra saṅkhye of the moon 2272, successively by 
multiplying the remainders by 60. It gives the quotients as 0, 3, 24 
in successive cases, so 0º3'24'' is the correction for the mean moon, 
which has to be subtracted from the mean moon.

triguṇābda corrected mean moon = 4s13º22'42'' – 0º3'24'' 
				              = 4s13º19'18''.
Similarly, the moon’s apogee (candrocca) is obtained for the 
dyugaṇa 206962 by using guṇakāra saṅkhye 10 and bhāgahāra saṅkhye 
32321. It results to 0s11º59'05'' adding the epoch value 2s13º27'12'', 
mean candrocca can be obtained as 7s7º12'14''. For this triguṇābda 
correction is applied, which results 0º0'4''.
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fig 5.2: Mandapadaka of candra, a folio from 
the Gaṇakānanda manuscript

triguṇābda corrected mean candrocca = 2s25º26'17'' – 0º0'04''
				                   = 7s7º12'10''

To find the true moon, consider manda kendra = candrocca triguṇābda 
corrected mean moon

			   mk = 217º12'10'' – 133º19'18
			         = 83º52'52'' < 180º.

Therefore 
		  bhujā of mk = 83º52'52''.
From manda padakāntara table of the moon, mandaphala for 83º 

= 300'32''
And for the difference 52'52''

		  = difference × antara from the table 
		  = 52'52'' × 0'39'' = 0' 35'' 
Thus, the mandaphala 
		  = 300'32'' + 0'35''= 5º32'35''.
Since mk < 180º, 
True moon = triguṇābda corrected mean moon + mandaphala 
	       = 133º19'18'' + 5º32'35''
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Therefore, 
True longitude of the moon = 138º51'53" for the midnoon of  
18-02-1486.

MEAN AND TRUE LONGITUDE OF THE MARS
FOR THE DATE 18-02-1486

To find the mean Mars, dyugaṇa of the given date 14129 is multiplied 
by guṇakāra saṅkhye 1 and dividing it by bhāgahāra saṅkhye 687 and 
successively multiplying the remainders by 12, 30, 60 and 60 as 
done in case of the sun and the moon. The quotients obtained are 
8, 11, 0 and 16, which form as 8s11º0'16''.
		  Mean Mars = 251°0'16" + 12°20'46" = 263°21'02".
		      Śīghrocca = 321°10'47"
After finding the mean Mars, the triguṇābda correction is applied. 
The dhruvābda 38 multiplied by 3 gives 114; dividing this number 
by triguṇābda bhāgahāra saṅkhye of the Mars 4297, successively by 
multiplying the remainders by 60. It gives the quotients as 0, 0, 
1 in successive cases, so 0º0'1" is the triguṇābda correction for the 
mean Mars, which has to be subtracted from the mean Mars. Since 
this value is very small, this correction is negligible.

Triguṇābda corrected mean Mars = 263°21'02''. 

As the author of the Gaṇakānanda is the follower of the text 
Sūrya-Siddhānta (belongs to saura-pakṣa school), he also adopts 
same procedure to compute true position of the planets. The four 
corrections are applied to mean planets are same as that in the 
Sūrya-Siddhānta and in the following steps.

First correction (half-śīghra correction):

śīghrakendra (sk1) = śīghrocca – mean planet.
Note: The mean sun is considered as śīghrocca for the superior 
planets, whereas, for the interior planets it is vice versa (it means 
that mean sun is considered as mean planet and mean planet is 
considered as śīghrocca). For Mars, 

sk1 = 321º10'47'' – 263º21'2'' = 57°49''45'' < 180º 
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fig. 5.3: Śīghrapadaka of Kuja, a folio from the Gaṇakānanda manuscript

From the above Gaṇakānanda tables, for sk = 57º, the śīghraphala 
(SE1) = 1310'5'' and for the remaining sk = 49'45'' the difference in 
the śīghraphala table is considered and it is to be multiplied, i.e. 
49'45" × 21'32'' = 17'51''.
Śīghraphala (SE1) = 1310'5'' + 17'51'' = 1327'5'' = 22º8'1''.

Thus, first corrected Mars mean planet� �

� � �
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Second Correction (Half-manda Correction)
Mandocca of Mars for the given year = 4s10º02'20'' − 0'3'' = 4s10º02'17'' 
(calculated by using the Table 5.3).

Mandakendra (mk1) = mandocca – first corrected Mars (P1)
		            = 130º02'17'' – 274º25'2'' = 215º37'15''.

From the Gaṇakānanda tables, for mk = 215º, the mandaphala (ME1) 
= 402' 13'' and the remaining mk = 37'15'' is multiplied by the 
difference in the mandaphala table, i.e.

37'15'' × 6'46'' = 4'12''
Mandaphala (ME1)	        = − 7º7'57''.
Second corrected Mars = P1 + −12(ME1)
		                  P2 = 270º51'4''.
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Third Correction (Full-manda Correction)
Mandakendra (mk2) = mandocca – second corrected Mars (P2)
		             = 130º02'17'' – 270º51'4'' = 219º11'13''.

From the Gaṇakānanda tables, for mk = 219º, the mandaphala (ME2) 
= − 7º45'24'' by proceeding as above.

Thus, third corrected Mars = mean planet + ME2

			        P3 = 255º35'38''.

Fourth Correction (Full-śīghra Correction)

Śīghrakendra (sk2) = śīghrocca – P3

		            = 321°10'47" – 255º35'38'' = 65º35'9'' < 180º. 

From the Gaṇakānanda tables, for sk = 65º, the śīghraphala 
(SE2) = 1480'40'' and the remaining sk = 35'09'' is multiplied by 
the difference in the śīghraphala table, i.e. 35'09'' × 20'56'' = 12'16".

Śīghraphala (SE2) = 1480'40'' + 12'16'' = 1492'56'' = 24º52'56''.

Thus, fourth corrected Mars 

= P3 + SE2  = 255º35'38'' + 24º52'56'': P4 = 280º28'35''.

Therefore, the true longitude of Mars = 280º28'35''. 
Yalaya’s example of Lunar Eclipse on 18-02-1486 is compared 

with modern values in the Table 5.5:

Table 5.5: Yalaya’s Example of Lunar Eclipse (18 Feb. 1486)
IST Modern

Beginning of eclipse 20h 23m 20h 31m

Beginning of totality 21h 34m 21h 42m 
Middle of eclipse 22h 10m 22h 18m 
End of totality 22h 46m  22h 54m 
End of eclipse 23h 57m 24h 5m 
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Table 5.6: Sun’s Sidereal True Longitude for 3 April 2012
Text 	 Mean Sun 	 Equation of centre 		  True sidereal Sun
MKS	 347o19'7''	 2o10'32''		  349o29'39''
GNK	 348o2'49''	 2o10'32''		  350o13'20''
Modern	 347o44'30''	 1o54'16''		  349o38'46''

This particular date is chosen since around that date every year 
the sun’s equation of centre (mandaphala) is maximum. In Table 
5.6, we observe that the mean longitude and the equation of centre 
are close in their values as per the Makarandasāriṇī to the modern 
ones. But the sun’s true longitude differs from the modern value 
by about 9'7'' and the equation of centre (mandaphala) by 16'16''. 
These differences are mainly because in modern computations, 
gravitational periodic terms are considered. In the classical Indian 
texts, even as in European tradition before Kepler, epicyclic theory 
was adopted. The results obviously vary a bit compared to those 
of Kepler’s heliocentric elliptical theory. The equation of centre 
(mandaphala) in siddhāntas is governed by the radii of the epicycles.

Sun’s Declination (Krānti)
In the computations of solar eclipses and transits we need to use 
the declination (krānti) of the sun. In Table 5.7, we compare the 
values of the sun's declination (δ) for two days when the sun’s rays 
fall directly on the Śivaliṅgam at the famous Ganigādhareśvara 
Temple in Bengaluru (see Shylaja 2008). From Table 5.7, we notice 
that on two days of the year 2012, viz. 14 January and 28 November, 
the declination of the sun has the values 21°2'29.13'' south and 
21°8'51.91'' south respectively according to the Makarandasāriṇī 
and the corresponding values according to the Gaṇakānanda are 
21o10'10.64'' south and 21°16'36.97'' south. It should be noted that 
the declination is calculated according to these texts for the same

Table 5.7: Sun’s Declination (δ) at 17h15m (IST)

Text 14 January  2012 28 November  2012
MKS 21o2'29.13'' S 21o8'51.91'' S
GNK 21o10'10.64'' S 21016'36.97'' S
Modern 21o11' S 21o17' S
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time. The difference in arcminutes for the two dates according 
to a particular text indicates that the corresponding azimuths 
and the altitudes of the sun slightly differ. The difference in the 
values of δ according to the two classical texts as compared to the 
modern values is due to the fact that the Indian classical texts 
took the obliquity of the ecliptic as 24° while the modern known 
value is around 23°26'. It is significant to note that the values of 
the Gaṇakānanda are closer to the modern ones.

Transits and Occultations 
The procedure for transits and occultations are similar to that of 
solar eclipse. The participating bodies in the case of transits will 
be the sun and the planets (Mercury or Venus) and for occultation 
moon and the planet or the star will be under consideration. 
The transits of Mercury and Venus occur when either of them 
is in conjunction with sun as observed from earth, subject to 
the prescribed limits.  The transit of Venus is a less frequent 
phenomenon as compared to that of Mercury. For example, after 
the transit of Venus in June 2004 the next occurrence was on 6 June 
2012. After that, the subsequent Venus transit will be about 105.5 
years later, i.e. in December 2117. 

While detailed working of planetary conjunctions is discussed 
in all traditional Indian astronomical texts under the chapter 
“Grahayuti”, it has to be noted that the transits of Mercury and 
Venus are not explicitly mentioned. This is mainly because when 
either of these inferior planets is close to sun it is said to be 
“combust” (asta) and hence not visible to the naked eye. Transit (of 
Mercury or Venus) is called saṅkramaṇa (of the concerned planet) 
or gadhāsta. In a transit of Mercury or Venus the concerned tiny 
planet passes across the bright and wide disc of the sun as a small 
black dot.

Conclusion
In the preceding sections we have introduced some features of the 
astronomical tables belonging to the saura-pakṣa. Examples given 
by Yalaya on the lunar and solar eclipses are listed. Computing 
the mean positions of heavenly bodies using the procedures 
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discussed in the Gaṇakānanda are explained. The mean epochal 
positions according to the Gaṇakānanda are compared with the 
Sūrya-Siddhānta, the Grahalāghavam and tropical mean longitudes.
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Karaṇa Kutūhala Sāriṇī 
Its Importance and Analysis
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Abstract: The tables of Karaṇa Kutūhala Sāriṇī are based on the 
Karaṇa Kutūhala of Bhāskara II (twelfth century). These tables 
are based on brāhma-pakṣa, though the author and period of 
construction of tables are not known but the manuscripts are 
available in libraries of oriental research institutes.

There are at least five extant manuscripts of the tables of the 
Karaṇa Kutūhala Sāriṇī with some expository details in table 
headings and marginal notes. For this paper we have used 
the manuscript of the Karaṇa Kutūhala Sāriṇī from BORI, Pune 
501/1895–1902.

The importance of the Karaṇa Kutūhala Sāriṇī tables lies in that 
the compilers of annual astronomical almanacs (pañcāṅgas) of 
brāhma-pakṣa use these tables.

In this paper, the mathematical model for the construction of 
tables are obtained with rationales. An example is worked out 
to compare the results with modern ephemerical values.

Keywords: Ahargaṇa, mandakendra, mandaparidhi, mandaphala, 
śīghraphala.
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Introduction
The determination of mean and true positions of the sun, the moon 
and the planets, computation of solar declination (krānti), lunar 
latitude (śara), the three problems relating to time, direction and 
place, risings and settings and conjunctions of the planets are the 
important parts of classical Indian astronomical texts. 

In the Karaṇa Kutūhala of Bhāskara II, the above all topics are 
dealt with handy and simplified procedures and useful values for 
kṣepaka, parākhya, maximum mandaphala, and maximum śīghraphala, 
and the denominators to compute mandaphala are listed. The 
computation of ahargaṇa is also reduced by taking a contemporary 
date as the epoch instead of considering the beginning of 
mahāyuga as the epochal point as in his Siddhānta-Śiromaṇi, thereby 
decreasing the tedious computations into a simple way.

The tables of the Karaṇa Kutūhala Sāriṇī are based on the 
astronomical handbook Karaṇa Kutūhala. These tables are based 
on brāhma-pakṣa – school of astronomy adhered to by Bhāskara 
II, which follows the parameters of the Brahmasphuṭasiddhānta 
of Brahmagupta (628 ce). The Karaṇa Kutūhala Sāriṇī consists of:
	 i. 	Mean motion tables of the sun, the moon, moon’s mandocca 

(apogee), moon’s pāta and that of five planets (Mars, 
Mercury, Jupiter, Venus and Saturn) in days (D), months 
(M), years (Y) and 20-year periods (20YP).

	 ii.	 Mandaphala tables or tables of the equation of the centre of 
the sun and the moon for manda anomaly from 0° to 90°.

	 iii. 	Table of solar declination and of lunar latitude for the 
arguments from 0° to 90°.

	 iv. 	Mandaphala tables of planets (tables of the equation of the 
centre for the planets for manda anomaly from 0° to 90°).

	 v.	 Śīghraphala tables of the planets (tables of the equation of the 
conjunction for planets for śīghra anomaly from 0° to 180°).

In this paper, mainly the analysis is focused on the differences 
that have been introduced in the tables from the text and we have 
analysed how these tables of the Karaṇa Kutūhala Sāriṇī are useful 
to almanac makers to compute day-to-day calculations of motions, 



|  75Karaṇa Kutūhala Sāriṇī

positions, phenomena, etc. so that it can be compiled for the entire 
year. Thus, the study reveals the relation between the text and the 
astronomical tables more precisely.

The Text: Karaṇa Kutūhala
The mean positions of the heavenly bodies are obtained by finding 
the number of days elapsed (ahargaṇa A) from the epochal date, 
i.e. from the mean sunrise at Ujjain on 24 February 1183 ce till the 
given date. Then by using the formulae and adding the epochal 
mean positions called kṣepaka to them (listed in Table 6.1), the 
mean positions of the heavenly bodies for the given date can be 
computed. 

In chapter 2, the “Spaṣṭādhikāra” of the Karaṇa Kutūhala, 
Bhāskara explains the method of finding the true positions of the 
sun and the moon by applying the manda saṁskāra and to those of 
five planets (Mars, Mercury, Jupiter, Venus and Saturn) by applying

Table 6.1: Epochal Mean Positions (Kṣepaka) and 
Formulae to Find Mean Longitude 

Heavenly Bodies		         Kṣepaka (K)		 Mean Longitudes of the Body

Sun		        10R29°13'		  A A K�
�
�
�

�
�
� �

13
903



Moon		        10R29°05'50''		 ( )14 14
17 8600

A A A K

 

�
�
�
�

�
�
� �

�
�
�

�
�
� �

Mandocca of moon 		        4R15°12'59''		
A A K
9 4012

�
�
�

�
�
� �

�
�
�

�
�
� �
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Moon’s pāta	  	       9R17°25'09''		  A A K
19 2700
�
�
�
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�
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�
�

�
�
� �
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Mars	   	       7R21°14'21''		  11
21 52444

A A K�
�
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�
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�
�
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�
� �

 

Mercury’s śīghrocca 		        2R21°14'30''		 ( )4 4
43 1421
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Jupiter		        2R04°00'51''		  A A K
12 4227
�
�
�

�
�
� �

�
�
�

�
�
� �

 

Venus’s śīghrocca 		        8R18°05'55''		  16
7451

16
10

A A K�
�
�
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�
� �
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�
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 

Saturn 		        4R03°43'17''		  A A K
30 9367
�
�
�

�
�
� �

�
�
�

�
�
� �

 
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two corrections called the manda and the śīghra saṁskāras. For 
this purpose, the text has provided tables of mandoccas (apogees), 
parākhyas, maximum mandaphala and śīghraphalas. Since the model 
of epicycle is adopted for true positions of planets, the manda 
peripheries used are as given in the Siddhānta-Śiromaṇi and they 
are fixed. The mandocca of the sun is 78° and those of five planets 
(Mars, Mercury, Jupiter, Venus and Saturn) are respectively 128°30', 
225°, 172°30', 81° and 261°.

The mandakendra (anomaly of equation of the centre) is the 
difference between mandocca and the mean planet.

Mandakendra (mk) = Mandocca – Mean Planet.

The mandaparidhis of all heavenly bodies, maximum mandaphalas 
in each case and denominators to compute mandaphala are listed 
in Table 6.2.

The mandaphala of heavenly body is calculated by using 

	 Mandaphala MP
jy bhuj mk

D
R bhuj mk

( ) �
� �� ���

�
�

�

�
� �

� �� ��a a a10 1sine 00
D

�

�
�

�

�
� ,

where D is the denominator of the respective planets and mk is 
the mandakendra. 	

For the sun and the moon, the only correction applied is 
equation of centre (mandaphala).

Table 6.2: Mandaparidhi, Maximum Mandaphalas 
and Denominators

Heavenly 	 Mandaparidhis	   Maximum	 Denominator
bodies 		  Mandaphala
Sun	 13°40'	 2°10'30''	 550
Moon	 31°36'	 5°01'45''	 238
Mars	 70°	 11°08'27''	 107
Mercury	 38°	 6°02'52''	 198
Jupiter	 33°	 5°15'07''	 228
Venus	 11°	 1°45'02''	 784
Saturn	 50°	 7°57'27''	 157
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Therefore, 
True sun = Mean Sun + Mandaphala 

and 
True moon = Mean moon + mandaphala.

In the Karaṇa Kutūhala, the radius R of the deferent circle is 120° 
instead of the usual 360°. Corresponding to the value of radius 
as 120°, the parākhya’s of each planet is given as 81°, 44°, 23°, 87° 
and 13° respectively for five planets, which will be used in finding 
śīghraphala of the planet. If the radius R is taken as 360°, then paridhi 
= 3 × parākhya. Thus, the periphery of śīghra epicycle is 243°, 132°, 
69°, 261° and 39° respectively for five planets.

In the case of superior planets the Mars, Jupiter and Saturn, 
the mean sun is considered as śīghrocca, for inferior planets the 
Mercury and Venus some special point is considered as their 
śīghroccas and the mean sun is treated as the mean planet.

Śīghrakendra = Śīghrocca – Mean Planet.
In both the cases of mandakendra and śīghrakendra, generally if 0° < 
kendra < 180°, then the phala is positive and if 180° < kendra < 360° 
the phala is negative.
	 i.	 Bhujā = kendra, if kendra < 90°.
	 ii.	 Bhujā = 180° – kendra, if 90° < kendra < 180°.
	 iii.	 Bhujā = kendra – 180°, if 180° < kendra < 270°.
	 iv.	 Bhujā = 360° – kendra, if 270° < kendra < 360°.

According to the Karaṇa Kutūhala, the śīghraphala of planets is 
found by using the formula

śīghraphala = sin−1 [ parākhya × bhujājyā
śīghrakarṇa ],

where, śīghrakarṇa (SK) is given by 

	 SK = √(parākhya)2 + 2 × (parākhya) × kotijā + (120)2

and
	 Bhujājyā = R sin (bhujā), koṭijyā = R cos (bhujā).
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Table 6.3: Procedure to Find True Position of Planets 
according to Karaṇa Kutūhala

Where ME is the correction corresponding to the manda
equation and SE corresponds to the śīghra equation.

For All Planets (Except Mars)		      For Mars
P1 = MP + ME1 		       P MP

ME
1

1

2
� �

P2 = P1 + SE1		       P P
SE

2 1
1

2
� �

P3 = MP + ME2		       P MP ME3 2� �

P4 = P3 + SE2		       P P SE4 3 2� �

To find the true positions of five planets the manda and śīghra 
corrections are applied successively one after the other as listed 
in Table 6.3.

The Tables: Karaṇa Kutūhala Sāriṇī
The Karaṇa Kutūhala Sāriṇī tables are the derived values of 
planetary mean motions with corrections for computing true 
motions for a given terrestrial location based on the first two 
chapters of the Karaṇa Kutūhala. 

In the Karaṇa Kutūhala Sāriṇī, the mean motion tables are given 
for 1 to 30 days, then for 1 to 12 months, then for 1 to 20 years 
and later the table is extended to 1 to 30 periods of 20 years each 
(it means that the mean motion is provided for 600 years). This 
method of giving the motion for the period of 20-year periods 
is unique. The epochal values according to the Karaṇa Kutūhala 
Sāriṇī are same as that of the text Karaṇa Kutūhala and the date is 
24 February 1183 ce. The mean daily motions are given up to fourth 
sub-seconds, thereby considering the fraction of motion also to 
the computation of positions of heavenly bodies. The mean daily 
motions are listed in Table 6.4.

Maximum equation of the centre (mandaphala) of bodies, given 
in the Karaṇa Kutūhala Sāriṇī, is slightly different as that of the 
Karaṇa Kutūhala and it attains its maximum at manda anomaly  
= 90° for all planets except for Mercury. For Mercury, the mandaphala 
is maximum for manda anomaly = 88°, whereas in the main text it
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Table 6.4: Mean Daily Motions according to the
Karaṇa Kutūhala Sāriṇī

Heavenly Bodies		      Mean Daily Motion
Sun 	                                                           0°59'8"10'"12iv40v

Moon	                                                     13°10'34"52'"31iv50v

Mars	                                                        0°31'26"28'"09iv50v

Mercury’s śīghrocca	                                 4°05'32"21'"01iv0v

Jupiter	                                                      0°04'59"08'"54iv 0v

Venus’s śīghrocca	                                      1°36'7"43'"49iv50v

Saturn	                                                     0°02'00" 23'"03iv30v

Lunar apogee	                                          0°06'40"53'"50iv10v

Lunar node	                                          − 0°03'10"48'"25iv30v

attains maximum at 90° for all planets. The maximum equation of 
the centre (mandaphala) for the bodies is listed in Table 6.5.

Even maximum equation of the conjunction (śīghraphala) of 
planets also differs from those of the Karaṇa Kutūhala. From the 
tables of the Karaṇa Kutūhala Sāriṇī, the śīghra anomaly at which 
the śīghraphala attains its maximum value can be easily noted. From 
the tables of śīghraphala (the equation of the conjunction) of the 
five planets in the Karaṇa Kutūhala Sāriṇī, the values of maximum 
equation of the conjunction is listed in Table 6.6.

Table 6.5: Maximum Equation of the Centre (Mandaphala) 
of the Bodies

Heavenly Bodies Maximum Mandaphala 
according to KKS

Maximum Mandaphala 
according to KK is at 90°

Sun 2°10'54"at 90° 2°10'30"
Moon 5°02'31"at 90° 5°01'45"
Mars 11°12'53"at 90° 11°08'30"
Mercury 6°25'25" at 88° 6°02'52"
Jupiter 5°15'47" at 90° 5°15'30" 
Venus 1°31'50" at 90° 1°45'02" 
Saturn 7°38'35" at 90° 7°57'27" 
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Table 6.6: Maximum Equation of Conjunction (Śīghraphala) 
of the Five Planets

Planets Maximum Śīghraphala 
according to KKS

Maximum Śīghraphala 
according to KK

Mars 41°18'16" at 130° 42°27'14"
Mercury 21°37'11" at 110° 21°30'36"
Jupiter 10°59'01" at 100° 11°03'00"
Venus 46°18'41" at 130° 46°28'08" 
Saturn 06°10'24" at 100° 06°13'10" 

Comparison of Karaṇa Kutūhala and Karaṇa Kutūhala Sāriṇī
The true positions of the sun, the moon and the five planets are 
computed according to both the Karaṇa Kutūhala and the Karaṇa 
Kutūhala Sāriṇī and the values are compared with the published 
ephemeris.

True positions of the Sun and the Moon according to the 
Karaṇa kutūhala
Kali ahargaṇa for 28-11-2018 = 1869985
Kali ahargaṇa for the epoch 24-02-1183 = 1564737

Difference in days = 305248, therefore the Karaṇa Kutūhala 
ahargaṇa = 305248. Here the Kali ahargaṇa is computed from beginning 
of Kali-Yuga (i.e. from the day between 17-18 February 3102 bce).

Finding Mean Sun and True Sun according to Karaṇa Kutūhala

Mean Sun = 1 13
903

�
�
�
�

�
�
�A +K, 

where A = Karaṇa Kutūhala ahargaṇa, K = Kṣepaka 

	  = 10R29°13' for the sun

	  = 890
903
�
�
�

�
�
�  × 305248 + 10R 29°13'

	  = 222°43'38"
Mandakendra (mk) = Mandocca – Mean Sun
		      = 78° − 222°43'38" + 360°
		      = 215°16'22" > 180°.   

\ MP is Negative
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Bhujā = Mandakendra – 1800, if 1800< m < 2700

          = 35°16'22"
Mandaphala (MP) = R mksin� ��10

550
 = 1°15'35"

True Sun = Mean Sun – MP
                 = 222°43'38" – 1°15'35" = 221°28'03".

Finding Mean Moon and True Moon 
according to the Karaṇa Kutūhala

Mean moon = 14 14
17

1
8600

� �
�
�
�

�
�
� �A K ,, 

      where K = 10R29°05'50"
	         = 13.17635431 × 305248 + 10R29°05'50"
	         = 104°53'51".
Moon’s mandocca = 1

9
1

4012
�

�
�
�

�
�
� �A K  where K = 4R15°12'59"

	                  = 0.111360363 × 305248 + 4R15°12'59"
	                  = 287°44'40".
Mandakendra (mk) = Mandocca – Mean Moon
	                  = 287°44'40" - 104°53'51"
	                  = 182°50'49" > 180°   

\ MP is negative.
Bhujā = Kendra – 180º, if 180º < kendra < 270º
          = 2°50'49".
Mandaphala (MP) = R mksin� ��10

238
 = 0°15'02"

True moon = Mean Moon – MP
	       = 104°53'51" – 0°15'02" = 104°38'49".

TRUE POSITIONS OF THE SUN AND THE MOON 
ACCORDING TO THE KARAṆA KUTŪHALA SĀRIṆĪ

For the same date 28-11-2018, by considering the Karaṇa Kutūhala 
ahargaṇa = 305248 days and using the tables, mean and true positions 
of the sun, the moon and the planets are found in the following 
section.
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After finding the ahargaṇa from the epochal date, divide it by 30. 
The integer part denotes the number of months completed and the 
remainder "D" in days. Then the number of months divided by 12 
gives the integer number as the completed years of 360 days each 
and the remainder "M" in months. The number of years divided 
by 20 gives the number "YP"-20 year-periods and the remainder 
"Y" in years. 

 Now, 305248 days is divided successively by 30, 12, 20 to get 
42YP, 7Y, 10M, 28D.
Note: In the Karaṇa Kutūhala Sāriṇī, the kṣepaka (K) value is already 
added to the values of periods of twenty years. So again adding K is 
not necessary, directly it gives the mean position. While considering 
the values of 20YP for more than 600 years, twice or more than twice 
the epochal value will be considered from the table so that kṣepaka 
(K) must be subtracted correspondingly once or more than once.

Finding Mean and True Sun
From the tables of the Karaṇa Kutūhala Sāriṇī, the mean sun is 
shown in fig. 6.1:
Motion for 30YP	 = 3R09°25'41"12'", where 1R = 30°
Motion for 12YP	 = 5R15°18'04"29'" (in both YPs the epochal  
			      value K is included)
Motion for 7Y    	 = 10R23°43'08"24'"
Motion for 10M	 = 9R25°40'51"00'"
Motion for 28D	= 0R24°38'24"15'" by adding all these and subtracting

 fig. 6.1: Mean motion table of the sun, a folio from the
Karaṇa Kutūhala Sāriṇī
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                             K = 10R 29°13' once and then by removing the cycles  
		     of 12 rāśīs. We get
Mean sun = 7R12°30'41"39'" = 222°30'41"39'"
Mandocca of the sun = 78°
Mandakendra (mk) = Mandocca – Mean Sun
	 = 78° – 222°30'41"39'" + 360°
	 = 215°29'19" > 180° 
Bhujā = Mandakendra – 180°, if 180° < m < 270°
          = 35°29'19"
From Ravi manda tables (the mandaphala (MP)) is given for every 
degree up to 90°) (fig. 6.2)

Mandaphala (MP) = 1°14'43" + 0°29'19" × 0°1'53" = 1°15'38".
True sun = Mean sun + MP
                = 222°30'41" – 1°15'38"
True sun = 221°15'03" = 7R11°15'03"

Finding Mean and True Moon
Mean Moon from the tables for the date 28-11-2018 is as follows:
Motion for 30YP = 8R21°30'41"22'" 
Motion for 12YP = 2R26°06'34"19'"
Motion for 7Y = 2R24°24'43"17'"
Motion for 10M = 11R 22°54'22"39'"

fig. 6.2: Mandaphala table of the sun, a folio from the Karaṇa Kutūhala Sāriṇī



84  | History and Development of Mathematics in India

fig 6.3: Daily motion table of the moon for 30 days, 
a folio from the Karaṇa Kutūhala Sāriṇī

Motion for 28D = 0R08°56'16"30'" by adding all these and subtracting 
K = 10R29°05'50'' once and then removing the cycles of 12 rāśis
Mean moon = 3R14°46'48"07'" = 104°46'48"07'".     

Finding Mandocca of the Moon
From the tables of candrocca:
Motion for 30YP = 2R09°03'17"49'" 
Motion for 12YP = 1R06°45'07"13'"
Motion for 7Y = 9R10°37'41"12'"
Motion for 10M = 1R03°24'29"11'"
Motion for 28D = 0R03°07'04"04'" by adding all these we get  
14R 02°57'39"29'" and subtracting K = 4R 15°12'59" and then by 
removing the cycles of 12 rāśīs. 
Mandocca of the moon = 287°44'40"
Mandakendra (mk) = Mandocca – Mean Moon
		      = 177°02'08'' < 180° 
Bhujā = 2°57'52"
From candra manda tables, 
Mandaphala (MP) = 0°10'35" + 0°57'52" × 0°68'15" = 1°16'24"
True moon = Mean Moon + MP
	       = 104°46'48" + 1°16'24"
True moon = 106°03'12" = 3R16°03'12".
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Table 6.7: True (Nirayaṇa) Longitudes of the Sun, 
the Moon and the Planets

Heavenly	 Karaṇa Kutūhala	 Karaṇa Kutūhala	 Modern (acc. to
Bodies	 (Mean Sunrise 	 Sāriṇī (Mean		 Ephemeris)
	 at Ujjain)	 Sunrise at Ujjain) 	 at 5:30 a.m. IST

Sun	 7R11°28'03''	 7R11°15'03''	 7R11°34'10''
Moon	 3R14°38'49''	 3R16°03'12''	 3R15°05'28''
Mars	 10R10°56'14''	 10R13°26'	 10R13°26'
Mercury	 7R10°52'42''	 7R10°42'21''	 7R10°06'
Jupiter	 7R14°27'40"	 7R14°27'22''	 7R10°12'
Venus	 6R01°17'20''	 6R01°27'13''	 6R03°27'
Saturn	 8R10°54'06''	 8R10°51'51''	 8R13°23'

Similarly, we can find the true positions of the five planets by 
finding their mean planet first, later first manda corrected planet 
followed by first śīghra corrected planet again manda correction to 
the mean planet followed by second śīghra correction that gives 
the true position of the planet.

By using both the Karaṇa Kutūhala and the Karaṇa Kutūhala 
Sāriṇī the true longitudes of heavenly bodies, the sun, the moon 
and that of five planets are found and the same are compared with 
that of ephemerical values and it is listed in Table 6.7.

Conclusion
We have discussed the procedures of both the Karaṇa Kutūhala and 
the Karaṇa Kutūhala Sāriṇī to find the true longitudes of the sun, 
the moon and the planets in the above sections. We can notice that 
the values obtained from both the Karaṇa Kutūhala and the Karaṇa 
Kutūhala Sāriṇī are almost same but when it is compared with 
ephemerical values slight variation is found hence the revision in 
the parameters is required. On revision of daily motion of the sun, 
the moon and the planets we can obtain the position that matches 
with the ephemerical values. By using tables computation can be 
made easier, especially for the traditional almanac makers for the 
compilation of annual almanacs.
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Hemāṅgada Ṭhakkura’s Grahaṇamālā 
Eclipses from 1620 to 2708 ce

V. Vanaja
M. Shailaja

S. Balachandra Rao

Abstract: Eclipses are the natural phenomena which frequently 
occur in nature. The event of an eclipse plays an important role 
in the religious life of mankind and also occupies an important 
place in the classical Siddāntic astronomy in India. Hemāṅgada 
Ṭhakkura (Śaka 1530-90) has listed the data of circumstances of 
both solar and lunar eclipses visible in India from 1620 to 2708 
ce in his text Grahaṇamālā. This text gives the circumstances 
of around 1,437 eclipses for a long period of 1,089 years. The 
listed data is based on the solar and lunar calendrical terms 
such as śaka, dyuvr̥nda (ahargaṇa), i.e. number of days since 
the beginning of that solar year, instans of full moon and new 
moon, weekday, nakṣatra, yoga, half-duration, beginning and 
end time of the eclipse. In the present paper we have critically 
studied the text Grahaṇamālā and the given circumstances of 
the eclipses are verified by using different Indian classical 
Siddāntic text procedures. We have also compared the results 
with modern ones.
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Keywords: Lunar eclipse, solar eclipse, śaka, dyuvr̥nda (ahargaṇa), 
nakṣatra, yoga, instances of full moon and new moon, half-
duration, beginning (sparśa), ending (mokṣa).

Introduction
The text Grahaṇamālā was written by Mahāmahopādhyāya 
Hemāṅgada Ṭhakkura (Śaka 1530-90) and it was edited by Pandit 
Shri Vrajkishore Jha, a Professor of Kameshwar Singh Darbhanga 
Sanskrit University, Kameshwar Nagar, Darbhanga, in the year 
1983 ce. In this book he has listed 1,437 eclipses among them 399 
solar eclipses and 1,038 lunar eclipses starting from Śaka 1542 
(1620 ce) to 2630 (2708 ce). The contents of the book is as follows 
(problem identification): 
	 1. 	Śaka
	 2.	 Dyuvr̥nda (ahargaṇa), i.e. number of days since the beginning 

of that solar year.
	 3.	 Instant of full moon and new moon.
	 4.	 Nakṣatra from Aśvinī, etc. for eclipse day. 
	 5.	 Yoga (Viṣkambha in Daṇḍas, etc).
	 6. 	Weekday; number of elapsed days in the corresponding solar 

month.
	 7. 	Name of the lunar month and half-duration of the eclipse.  
	 8. 	Beginning of the eclipse (sparśa kāla).
	 9. 	End of the eclipse (mokṣa kāla). 
	 10. 	Moon’s latitude (South or North). 

To verify the given data of the eclipses we used the Indian 
Siddhāntic procedures. According to the data to get the eclipsed 
date and its circumstances we should have the information 
regarding our Indian calendrical system of both lunar as well as 
solar.

Calendar Analysis
The text Grahaṇamālā gives the data in the following format:
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Here Śaka era starts from 78 ce and it is very widely used for both 
solar and lunar calendars. The data of these eclipses start from Śaka 
1542 and end in Śaka 2630 which is equivalent to the Christian 
calendar year from 1620 to 2708 ce. Specified tithi name and 
also its time in terms of daṇḍa (unit for time in that period, i.e. 1 
civil day = 60 daṇḍas) one for lunar eclipse, i.e. pūrṇimā and other 
one for solar eclipse, i.e. amāvāsyā. For example, the given Śaka is 
1542, add 78 to this to get the Christian year, i.e 1542 + 78 = 1620 ce.

Dyuvr̥nda
Dyuvr̥nda is nothing but the number of days elapsed from a 
particular year from one meṣa-saṅkramaṇa to another meṣa-
saṅkramaṇa. The sun enters into Meṣa rāśi is known as meṣa- 
saṅkramaṇa in solar year. Solar year is the time taken by the sun to 
go around the ecliptic once with reference to the fixed stars. The 
solar year starts when the sun enters the constellation Meṣa. In 
the current century this is around April (14 or 15). The solar year 
is divided into twelve solar months. Using Siddhāntic procedure 
for the above-cited data, the meṣa-saṅkramaṇa of 1542 Śaka falls on 
7 April 1620 ce that is on Sunday (this is in sixteenth century). To get 
this result, we have used the Kali epoch as the midnight between 
17 or 18 February 3102 bce (Julian) and the weekday is considered 
as Friday, so assumed that to get the dyuvr̥nda he considered as 
the epoch as meṣa-saṅkramaṇa of a particular year.
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Here we added dyuvr̥nda to meṣa-saṅkramaṇa to get the eclipsed 
date, for first example, dyuvr̥nda is 67 it falls on 14 June 1620 ce, 
Sunday but that day eclipse did not occur and actual eclipse 
occurred on 15 June 1620 ce, Monday. This we verified using 
modern and Siddhāntic procedures and also with the NASA data. 
After dyuvr̥nda he mentioned instant of full moon or new moon. 
According to Siddhāntic procedure to get instant of full moon or 
new moon, we need the true positions of the sun and the moon 
and their daily motions from the iṣṭa kāla of that day it can be 
calculated as
		  I

TrueSun TrueMoon
MDM SDM

�
�� � �

�

�

�
��

�

�
���

180
24

( )
h,

where MDM = daily motion of the moon; SDM = daily motion 
of the sun.

He mentions that every lunar eclipse occurs on a full moon 
day (pūrṇimā) and solar eclipse on a new moon day (amāvāsyā), 
and the time unit as daṇḍa that is considered as 1 civil day = 60 
daṇḍas which is equivalent to 24 hours. Therefore 1 hour = 2.5 
daṇḍas. Then he has given the time of nakṣatra and yoga of the 
eclipsed day in daṇḍas. The “asterism”, one of the 27 divisions of 
the zodiac from Aśvinī to Revatī, occupied by the nirayaṇa moon 
is mentioned. Yoga is the sum of the nirayaṇa longitudes of the 
sun and the moon is divided into 27 equal divisions. There are 
27 nirayaṇa yogas. They are viṣkambha, prīti, āyuṣmān, …, indra, 
vaidhr̥ta. He has mentioned the name of nakṣatra and yoga using 
the lunar month (a period from one new moon to the next new 
moon). The lunar calendar of our Indian system of lunar months 
are Caitra, Vaiśākha, …, Phālguna. For the calculation of these 
pañcāṅga elements, refer Balachandra Rao’s book Indian Astronomy: 
Concepts and Procedures (2014).

In this text we found another important data in the form of 
specific number and short week day name. Here the given number 
belongs to the number of days elapsed in that solar month of 
the luni–solar calendar.
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Example:
'kkd ûüý |qo'Un 20 iwf.kZek þÿAÿý Lokrh þþAüû f'k ûüAö 'kq üú
oS'kk[kh fLFkR;n~/Z ûAü÷ Li'kZ þþAüö eqfÙkQ þ÷Aüú 'kj lkSE;AA

śaka 1823 dyuvr̥nda 20 pūrṇimā 45/53 svātī 44/21 śi 12/6 śu 
20 vaiśākhi sthityarddha 1/27 sparśa 44/26 mukti 47/20 śara 
saumya AA

Year = 1823 = + 78 = 1901 ce, in this particular year, the date of 
meṣa-saṅkramaṇa was fallen on 13/04/1901 to this add 20 days to 
get the actual eclipse date, i.e. 3 May 1901 ce and tithi was pūrṇimā 
the running nakṣatra and yoga of eclipsed day were svātī and siddhi 
respectively. In this data śu corresponds to weekday śukravāra 
(Friday), the number 20 corresponds to the elapsed days in solar 
month, i.e. Meṣa, and lunar month is Vaiśākha.

To predict the solar and lunar months of the year, fig. 7.1 
will be useful. It is consisted of twelve lunar and solar months, the 
beginning of the lunar year is at the instant of the new moon (i.e. 
final moment of amāvāsyā of the previous lunar month) occurring 
in the course of the solar Caitra (i.e. when the sun is in Mīna rāśi). 
The second month of the lunar calendar, viz. Vaiśākha, starts at 
the following new moon and so on. In the chart, N0, N1, N2, etc. 
refer to new moons.

Here we have considered the computation of lunar eclipse 
date and compared that with of the Modern NASA tables and 
Siddāntic procedures. We have obtained an algorithm using Scilab 
software to compute lunar eclipse for the dates given in the text 
Grahaṇamālā.

Comparison of lunar eclipse circumstances according to the 
Grahaṇamālā, Siddhāntic text and modern techniques for the date  
31 January 2018. The Grahaṇamālā data is as follows:

'kkds ûùýù |qo'Un üùü iwf.kZek ýüAýü iq"; üùAþû izh úúAýù cq ûö

ek?kh fLFkR;¼Z þAüÿ Li'kZ üøAú÷ eqfDr ýöAÿ÷ 'kj lkSE;AA

śāke = 1939 dyuvr̥nda 292 pūrṇimā 32/32 puṣya 29/41 prī 00/39 
bu 16 Māghī sthityarddha 4/25 sparśa = 28/07 mukti = 36/57 śara 
saumya AA
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Computation of Lunar Eclipse by 
Indian Siddhāntic Procedure
Using the Indian Siddhāntic procedure and its terms like true 
positions of the sun, the moon and daily motions we constructed 
the following algorithm to compute lunar eclipse and called it as 
Improved Siddhāntic Procedure (ISP).
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Example: Lunar eclipse on 31 January 2018, Wednesday.
Instant of opposition is 18h58m57s (IST). 
At the instant of opposition
True sun: 286°56'33"; True Moon: 99°06'13"; Rāhu: 110°49'38".
Sun’s daily motion, SDM: 1°.014722
Moon’s daily motion, MDM: 14°.968611

	 (i)	 Moon’s latitude (candra śara) = β = 308' × sin (M − R) =  
− 0.296808 = − 17'.808384.

	 (ii)	 Moon’s angular diameter (candra bimba) = MDIA =  
22 939 6 61 1

60
. . cos� � �� �GM  in minutes of arc where GM is the moon’s 

anomaly (mandakendra) measured from its perigee and it is 
given by

GM = 134°.9633964 + 13°.06499295T + · · ·,

		  where T be the number of days completed since the epoch 
1 January 2000, noon (GMT), i.e. 18h58m57s (IST). JD for this 
particular date, i.e. 31 January 2018 is 2458150.

		  JD for 1h28m = (18h58m17h30m) = lh m

h

28
24

 = 0.061111 days. 
		  ∴ the days from the epoch (1 January 2000, noon GM) is 
		  T = JD for 31 January 2018 – JD for 1 January 2000.
		  T = 2458150.061111 – 2451545 = 6605.0611.
		  Using the value of T in GM it obtains the value
		  GM = 134°.9633964 + 13°.06499295T + … = 30°.029387
	 	 ∴ MDIA = 33'.083283.
		  GS = The sun’s mean anomaly from its perigee

	   = 357°.529092 + 0°.985600231 T = 27°.4795.

	 (iii)	 Diameters of the earth’s shadow (chāyā bimba):
		  SHDIA = 2 [ ]2545.4 228.9cos 16.4cos

60
GM GS+ −  in minutes of arc

		  SHDIA = 90'.967493
		  True daily motions of the sun and the moon:
		  vyarkendu sphuṭa nāḍī gati, VRKSN = (MDM - SDM) per nāḍī
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		  i.e. VRKSN = ( )
60

MDM SDM−  = 13'.953889

		  Note: One day = 60 nāḍīs; 1 nāḍī = 60 vināḍīs = 24 minutes
	 (iv)	 Bimba yogārdham = D = ( )MDIA SHDIA−

2  = 62'.025388.
	 (v)	 Bimba viyogārdham = D' = SHDIA MDIA−

2
 = 28'.942105.

	 (vi) 	Sphuṭa śara = β' = β × 1 1
205

�
�
�
�

�
�
� = – 0.295360 = – 17'.721513, 

where β is the moon’s latitude from step (i) above.
	(vii)	 MDOT, ṁ = VRKSN × 1 1

205
�

�
�
�

�
�
� = 14'.021968.

	(viii)	 If |β'| < D', then lunar eclipse occurs. If |β'| < D', then the 
eclipse is total.

		  In this case |β'| < D', i.e. 17'.7216 < 28'.942105. Hence, the 
eclipse is total.

	 (ix)	 VīRāhu Candra, VRCH = (True Moon – True Rāhu) 
					              = – 30.314671 = – 3018'53".
	 (x)	 Calculate: COR = ' 59

10 m
β ×

× 
 vināḍīs.

	(a)	 If VRCH is in an odd quadrant (i.e. I or III), then subtract 
the above value COR from the instant of opposition to 
get the instant of the middle of the eclipse.

	(b)	 If VRCH is in an even quadrant (i.e. II or IV), then add 
the above value COR to the instant of opposition to get 
the instant of the middle of the eclipse. 

		  In the current example, COR = |β'| × 59
   10 × ṁ  = 0'.049711.

		  Now, VRCH = 357˚18' 53". Since VRCH > 270˚, i.e. VRCH 
is in IV quadrant (even), the above value is additive from 
the instant of opposition.

		  ∴ Middle of the eclipse = Instant of opposition + COR
					          = 18h58m57s + 0h2m59s  
					          = 19h01m56s

	 (xi)	 Half-duration of the eclipse (Sthiti)
		  HDUR = ( )22

h m s' 24.23905 4.23905 1 41 44
m 5

D
nadi =

− β
= × =



 = 4.23905 nādi = 4.23905 × 
( ) ( )22

h m s' ' 21.631875 1.631875 0 39 10
m 5

D
nadi =

− β
= × =



 = 1h41m44s

	(xii)	 Half-duration of totality (marda )
		  THDUR = ( ) ( )22

h m s' ' 21.631875 1.631875 0 39 10
m 5

D
nadi =

− β
= × =



 = 1.631875 nādi = 1.631875 × 
( ) ( )22

h m s' ' 21.631875 1.631875 0 39 10
m 5

D
nadi =

− β
= × =



 0h39m10s
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Summary of the Eclipse	       IST

Beginning of the eclipse (sparśa) = Middle – HDUR = 19h01m56s – 1h41m44s 
	                             	 = 17h20m12s

(1) Beginning of totality (sammīlana) = Middle – THDUR = 19h01m56s – 0h39m10s	
		  = 18h22m46s

(2) Middle (madhya) = Instant of full moon + COR	 = 19h01m56s

(3) End of totality (unmīlana) = Middle THDUR = 19h 01m 56s + 0h39m10s	
		  = 19h41m06s

(4) End of the eclipse (mokṣa) = Middle HDUR = 19h 01m 56s + 1h41m44s 
		  = 20h43m40s

		  Pramāṇam (Magnitude) = ( )2
'D

MDIA
− β  = 1.339162.

We are comparing these results with the Grahaṇamālā data, 
modern procedure and also with NASA. We can identify the 
variation of the range in IST of 2 minutes in our ISP.

Now, we consider a few data related to solar eclipses as given 
in the Grahaṇamālā.

'kkds ûÿþý |qo'Un þý vekokL;k üüAÿ÷ ÑfÙkdk ûûAü vú úúAþü 'kqú ûþ T;S"Bh fLFkR;/Z 

ûAþû Li'kZ üþAûö eqfÙkQ ü÷AþûA

śāke 1543 dyuvr̥nda 43 amāvāsyā 22/57 kr̥ttikā 11/2 am 00/42 śu 14 
jyaiṣṭhī sthityardha 1/41 sparśa 24/19 mukti 27/41. 

	 Grahaṇamālā	 ISP	 Modern	 NASA

Beginning of 	 17h14m48s 	 17h20m12s	  17h20m32s	 17h18m27s

the eclipse
(sparśa)	
Beginning of	        —	 18h22m46s 	 18h23m29s	 18h21m47s

totality 
(sammīlana)			 
Middle	 19h00m48s 	 19h01m56s	 19h01m09s	 18h59m49s

(madhya)
End of totality	        —	 19h41m06s	 19h38m49s	 19h37m51s

(unmīlana)	
End of the 	 20h46m48s	 20h43m40s	 20h41m46s	 20h41m11s

eclipse (mokṣa)	

Table 7.1: Lunar Eclipse Circumstances in IST with 
Different Procedures
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'kkds ûÿþþ |qo'Un üúù vekokL;k ûýAýù Lokrh üAûþ lkSú þþAüý o'ú üý dkfÙkZdh 

fLFkR;/Z üAûû Li'kZ ûûAüþ eqfÙkQ ûÿAþöA

śāke 1544 dyuvr̥nda 209 amāvāsyā 13/39 svāti 2/14 sau 44/23 br̥ 23 
kārttikī sthityardha 2/11 sparśa 11/24 mukti 15/46.

'kkds ûÿþÿ |qo'Un ýþÿ vekokL;k ûûAø mÙkjHkknz ýþAÿ÷ 'kqú úúAúù ea ûû pS=kh fLFkR;/Z 

ûAûû Li'kZ ÷Aÿú eqfÙkQ ûúAûüA

śāke 1545 dyuvr̥nda 345 amāvāsyā 11/8 uttarābhādra 34/57 śu 
00/09 ma 11 caitrī sthityardha 1/11 sparśa 7/50 mukti 10/12

'kkds ûùýü |qo'Un üöþ vekokL;k üýAýû iwokZ"kk<+ ÿýAýý /zq üÿAü ea ûù ikS"k fLFkR;¼Z 

ûAýú Li'kZ üüAýü eqfDr üÿAýü 'kj lkSE;AA

śāke 1932 dyuvr̥nda 264 amāvāsyā 23/31 pūrvāṣādha 53/33 dhru 25/2 
ma 19 pauṣī sthityardha 1/30 sparśa 22/32 mukti 25/32 śara sanmya

'kkds ûùý÷ |qo'Un ýüù vekokL;k úúAûü iwoZHkknz þúAüþ lk ûùAû cq üÿ iQkYxquh 

fLFkR;¼Za üAûù Li'kZ ÿ÷Aþû eqfDr üAûù 'kj ;kE;AA

śake 1937 dyuvr̥nda 329 amāvāsyā 00/12 pūrvabhādra 40/24 sā 19/1 
bu 5 phālguni sthityardha 2/19 sparśa 57/41 mukti 2/19 śara yāmya

'kkds ûùþû |qo'Un üÿÿ vekokL;k ûûAÿþ ewy üøAù o' þüAûÿ o' ù "kkS"kh fLFkR;¼Z 

üAüù Li'kZ øAþÿ eqfÙkQ ûýAþý 'kj ;kE;AA

śake 1941 dyuvr̥nda 255 amāvāsyā 11/54 mūla 28/9 br̥ 42/15 br̥ 9 
pauṣī sthityardha 2/29 sparśa 8/45 mukti 13/43 śara yāmya.

Computation of Solar Eclipse by 
Indian Siddhāntic Procedure
Using the Improved Siddhāntic procedure, we verify one of the data 
given in the Grahaṇamālā. Consider an eclipse of data given in 
the year 2016 ce. 

According to the above data, the eclipsed date occurred on 
9 March 2016 is considered as an example.
Example: Solar eclipse for the world in general was on 9 March 2016.
	 (i) 	For the given date at 5.30 a.m. (IST) from IAE. 
	 1. 	 True longitude of the sun                     = 324º45'58"
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	 2. 	 True longitude of the moon                 = 323º39'38" 
	 3. 	 True longitude of the Rāhu                  = 147º42'
	 4. 	 Sun’s true daily motion (SDM)            = 59'59"
	 5. 	 Moon’s true daily motion (MDM)       = 14º58'04".
	 (ii) 	Instant of conjunction:

   5h 30m  Difference in true longitude of the sun and the moon
Differeence in their daily motions

× 24  

			   = 5h30m + (04'44.94" × 24) = 5h30m + 1h53m58s 
			   = 7h23m58s a.m. (IST). 
		  Difference in time = instant of conjunction – 5.30 a.m. 
		  = 1h53m58s.
	 (iii)	 True longitudes at the instant of conjunction: 
		  True longitude of the sun = 324º50'43". 
		  True longitude of the moon = 324º50'43". 
		  Longitude of the Rāhu = 147º41'41".
	 (iv)	 Find anomalies (GM and GS) of the moon and the sun (from 

perigee).
		  Let T be the number of Julian days completed since the epoch 

1 January 2000, noon (GMT), i.e. 17h30m.
		  Using the ahargaṇa tables, find the JD for 9 March 2016.
		  In this example 
		      T = No. of JD for 9 March 2016 at 7h23m58s – JD at epoch
		      T = 2457356.57914352 – 2451545 = 5811.57914352.
		  GM = 134º.9633964 + 13º.06499295T + … + = 103º.186778.
		  GS  = 357º.5291092 + 0º.985600231T + … + = 325º.422838,
		  where GM and GS are the moon’s and the sun’s anomaly 

from its perigee respectively.
	 (v)	 The true angular diameters of the sun and the moon are 

given as SDIA and MDIA respectively.
		  SDIA = 2 961 2 16 1

60
. . cos� � ���� ��GS  in minutes of arc 

			          = 32'.481871 = 32'28".



98  | History and Development of Mathematics in India

		  MDIA = 2 939 6 16 1
60

. . cos� � ���� ��GM  in minutes of arc 

			            = 30'.855383 = 30'51".
	 (vi)	 Moon’s horizontal parallax is given by 
		  PAR = 3447 9 224 4

60
. . cos ( )� ��� ��GM  in minutes of arc 

			        = 54'.157677 = 54'9".
		  The sum of the semi-diameters of the moon and the sun 

with addition of the moon’s parallax is denoted by D.
		  i.e. D = PAR ( 2

MDIA SDIA+ ) = 85'.826304 = 85'49".
		  The difference of the semi-diameters of the moon and the 

sun with addition of the moon’s parallax is denoted by D1.
		  i.e. D1 = PAR ( 2

MDIA SDIA+ ) = 53.344433 = 53'20".
		  The moon’s latitude is β = 308' sin (M − R), where M and 

R denote the true longitudes of the moon and Rāhu at the 
instant of conjunction.

		  Here, β = 15'.339750 = 15'20".
		  The apparent latitude of the moon is given by 
		  β1 = 204

205
β 15'.264922 = 15'15"

		  In this example, |β1| < D1, i.e. 15'15" < 53'20". Hence eclipse 
is total.

	(vii) 	Vyarkendu nāḍī gati = ( 60
MDM SDM− ) in minutes = 13'.968056  

			       = 13'58".
		  The apparent rate of motion of vyarkendu nāḍī gati, denoted 

by ṁ. It is given by ṁ = VRK × 206
205

 = 14'.036192 = 14'2".
	(viii)	 Let Virāhucandra, VRCH = True Moon – Rāhu = 177º.145238 

= 177º8'43".
		  Note: If VRCH < 0, then add 360º to get the positive value 

of it.
	 (ix)	 The middle of the eclipse: instant of Conjunction Time ± COR,
		  where, COR = 

99
1000 m

× |β1|
×   = 2m35s, called “correction” in nāḍī, 

which is added or subtracted as VRCH is in even and odd 
quadrant respectively.
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		  Middle of the eclipse = Instant of Conjunction + COR 
					            = 7h23m58s + 0h2m35s

					            = 7h26m33sa.m. (IST).
	 (x)	 Half-interval of the eclipse is given by
		  HDUR = 

2 2( ) ( 1)
m

D − β


 = 2.406861 = 2h24m24s.
		  THDUR = 2 2( 1) ( 1)

m
D − β



 = 1.456626 = 1h27m24s.
The beginning and the end moments of the eclipse as also of 

totality are obtained as follows:

Summary of the Eclipse
Beginning of the eclipse	 : 	 Middle – HDUR = 5h02m09s (IST). 
Beginning of the totality	 :	 Middle – THDUR = 5h59m09s (IST).
Middle of the eclipse	 :	 7h26m33s (IST).
End of the totality	 :	 Middle + THDUR = 8h 53m57s (IST). 
End of the eclipse	 :	 Middle + HDUR = 9h50m58s (IST).

Table 7.2 gives the circumstances of the solar eclipse occurred 
on 9 March 2016 with data of the Grahaṇamālā, ISP, Modern and 
NASA in Indian Standard Time (IST).

From Table 7.2, we can observe the circumstances of the solar 
eclipse of the Grahaṇamālā and the Sūrya Siddhānta data which are 

Event	 Grahaṇamālā	 Sūrya 	 ISP	 Modern
		  Siddhānta		
		  (Bangalore)		
Beginning of 	 5h04m24s	 5h21m12s	 5h02m09s	 4h49m48s

the eclipse	
(sparśa)	
Beginning of	         —	         —	 5h59m09s	 5h49m43s	
totality
(sammīlana)	
Middle	 6h04m48s	 6h05m 36s	 7h26m33s	 7h28m19s

(madhya)
End of	         —	         —	 8h53m47s	 9h06m55s 
totality 
(unmīlana)
End of the	 6h55m36s	 6h49m00s	 9h50m58s	 10h06m50s

eclipse (mokṣa)

Table 7.2: Solar Eclipse Circumstances in IST 
with Different Procedures
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comparable and computed for a particular place. The Sūrya 
Siddhānta data gives a place called Bangalore. According to the 
text Grahaṇamālā, the given data corresponds to Ujjainī because 
the author of this text belongs to north India. The ISP and modern 
procedures give data related to the world in general. However, the 
middle of the eclipse calculations is comparable to one another 
with respect to their procedures.

Conclusion 
We have discussed the text the Grahaṇamālā of Hemāṅgada Ṭhakkura 
and the data of this text are verified by the Indian Siddhāntic 
procedures of both the eclipses. These data have variations with a few 
minutes in IST. The lunar eclipse data differ in their circumstances 
with 2 minutes for the world in general. The circumstances of the solar 
eclipse are different for a particular place and the world in general.
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Makarandasāriṇī
Some Special Features

S.K. Uma
Padmaja Venugopal

K. Rupa
S. Balachandra Rao

Abstract: In our Indian society, for both civil and religious 
purposes, the annual astronomical almanacs called pañcāṅgas 
are almost a necessity. Compilation and use of annual pañcāṅgas 
are a socio-religious necessity in our Hindu society. These 
annual pañcāṅgas are compiled using traditional astronomical 
tables called sāriṇīs, padakas or koṣṭhakas. These tables, in turn, 
are constructed based on classical texts like the Sūryasiddhānta, 
Āryabhaṭīyam, Brahmasphuṭa-siddhānta and Grahalāghava. 
These texts have given rise to different siddhānta pakṣas 
(schools of astronomy) called (i) Saurapakṣa, (ii) Āryapakṣa,  
(iii) Brāhmapakṣa, and (iv) Gaṇeśapakṣa. 

These different pakṣas conformed to the parameters and 
procedures respectively of the Sūryasiddhānta and Āryabhaṭīyam of 
Āryabhaṭa I (476 ce), Brahmasphuṭasiddhānta of Brahmagupta (628 
ce) and Grahalāghava of Gaṇeśa Daivajña (1520 ce). Since the direct 
application of the major texts is cumbersome and tedious for day-
to-day positions of heavenly bodies, the pañcāṅgas are compiled 
annually based on sāriṇīs (tables) of different siddhānta pakṣas.
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Among the tables of Saurapakṣa, the most popular is the 
Makarandasāriṇī. These tables with explanatory ślokas are 
composed by Makaranda, son of Ānanda of Kāśī in Śaka 1400 
(1478 ce). As compared to other Indian astronomical tables the 
Makarandasāriṇī has some unique and special features:

i.	 Determination of ahargaṇa in the sexagesimal system. 

ii.	 For obtaining the true position of the tārāgrahas, in other 
systems the manda and śīghra equations are generally 
applied in four stages. But this procedure is reduced 
to only three significant stages, viz. (a) half śīghra, (b) 
manda, and (c) full śīghra. In this case the usual half 
manda and full manda corrections are combined in a 
mathematically justified manner.

iii.	In the computations of lunar and solar eclipses, the 
angular diameters of the sun, the moon and the earth’s 
shadow are obtained from the moon’s nakṣatramāna 
(duration of nakṣatra) and the sun’s saṅkrānti.

Keywords: Ahargaṇa, Makarandasāriṇī, Saurapakṣa. Makaranda, 
śīghra, manda, angular diameters, bimbas, nakṣatrabhoga, 
Sūryasiddhānta.

Ahargaṇa
Literally the word ahargaṇa means “heap of days”. According to 
Siddhāntas, it is the number of mean civil days elapsed since a 
chosen epoch at midnight or mean sunrise for the Ujjain meridian. 
This meridian passes through Laṅkā, supposedly on the equator. 
The calculation of ahargaṇa depends on the calendar system it 
follows. The traditional Hindu calendar follows both luni-solar 
and solar systems. The former is pegged on to the latter through 
intercalary months. In the present paper, the procedures for finding 
ahargaṇa have been presented in detail with concrete examples.

THE GENERAL PROCEDURE FOR FINDING AHARGAṆA 

The process of finding ahargaṇa essentially consists of the following 
steps:
	 i.	 Convert the solar year elapsed (since the epoch) into lunar 

months.
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	 ii.	 Add the number of adhikamāsas during that period to give 
the actual number of lunar months that have elapsed up to 
the beginning of the current lunar year.

	 iii.	 Add the number of elapsed lunar months in the given year.
	 iv.	 Convert these actually elapsed number of lunar months into 

tithis (by multiplying it by 30).
	 v.	 Add elapsed number of tithis in the current lunar month.
	 vi.	 Subtract the kṣaya dinas and finally convert the elapsed 

number of tithis into civil days.
Note: While finding adhikamāsas, if an adhikamāsa is due after the 
lunar month of the current year, then 1 is to be subtracted from the 
calculated number of adhikamāsas. This is because an adhikamāsa 
which is yet to come in the course of current year would have 
already been added.

AUDĀYIKA AND ĀRDHARĀTRIKA SYSTEMS

In Indian astronomical texts, the Kali-Yuga is said to have started 
either at the mean sunrise on 18 February 3102 bce or at the 
midnight between 17 and 18 February 3102 bce. Accordingly, the 
corresponding systems are called respectively Audāyika (sun rise 
system) and Ārdharātrika (midnight system).

Interestingly, even the important astronomical parameters 
are somewhat different in the two systems. In fact, the earliest 
available systematic text, the Āryabhaṭīyam of Āryabhaṭa I (b.476 
ce) belongs to the Audāyika system. It is believed that Āryabhaṭa 
wrote another text – popularly described as the Āryabhaṭa 
Siddhānta which belongs to the Ārdharātrika system. Again, the 
earliest text of Ārdharātrika system available and popular is the 
Khaṇḍakhādyaka of Brahmagupta (b.598 ce).

TO FIND AHARGAṆA SINCE THE KALI EPOCH

Before evolving a working procedure for finding the Kali ahargaṇa, 
we shall list some useful data for the purpose according to the 
Sūryasiddhānta. In a mahāyuga of 432 × 104 years, we have	
	 (i)	 Number of sidereal revolutions of the moon:	 57,753,336
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	 (ii)	 Number of revolutions of the sun	       :	    4,320,000
	 (iii)	 Number of lunar months in a mahāyuga of
		  432 × 104 years given by (i) − (ii)		        :	 53,433,336
Number of adhikamāsas in a mahāyuga 
       = No. of lunar months – ( 12 × number of solar years)
      = 53,433,336 – ( 12 × 4,320,000)
      = 53,433,336 – 51,840,000
      = 1,593,336.
Suppose we wish to find ahargaṇa for the day on which x luni-
solar years, y lunar months and z lunar tithis have elapsed. Then 
the number of adhikamāsas in x completed solar years is given by 

			   x1 = INT ( ) , ,
, ,

x �
�

�
�

�

�
�

�

�
�

�

�
�

1 593 336
4 320 000

where INT (i.e. integer value) means only the quotient of the 
expression in the square brackets is considered.

Now, since in the given luni-solar year, y lunar months and z 
tithis have elapsed, we have

No. of lunar months elapsed since the epoch 
= 12

301x x y z
+ + + ,

where the number of elapsed tithis z is converted into a fraction of 
a lunar month. The average duration of a lunar month is 29.530589 
days. Therefore, the number of civil days N1 elapsed since epoch: 

N1 = INT 12
13

29 5305891x x y z
� � �

�
�
�

�
�
��

�

�
�

�

�
�. .

Here also only the integer part of the expression in the square 
brackets is considered.

Since in our calculations we have considered only mean 
duration of a lunar month, the result may have a maximum 
error of 1 day. Therefore, to get the actual ahargaṇa N, addition or 
subtraction of 1 to or from N1 may be necessary.

This is decided by the verification of the weekday. The tentative 
ahargaṇa N1 is divided by 7 and the remainder is expected to give 
the weekday counted from the weekday of the chosen epoch. For 
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example, the epoch of Kali-Yuga is known to have been a Friday.
Therefore, when N1 is divided by 7, if the remainder is 0, then 

the weekday must be a Friday, if 1 then Saturday, etc. However, 
if the calculated weekday is a day earlier or later than the actual 
weekday, then 1 is either added to or subtracted from N1 so as to 
get the calculated and actual weekday the same. Accordingly, the 
actual ahargaṇa N = N1 ± 1. 

It is important to note that the method described above is a 
simplified version of the actual procedure described variously by 
the Siddhāntic texts.
Note: While finding the number of adhikamāsas x1 in the above 
method if an adhikamāsa is due after the given lunar month in the 
given lunar year, then subtract 1 from x1 to get the correct number 
of adhikamāsas.
Example: Find Kali ahargaṇa corresponding to Caitra kr̥ṣṇa trayodaśī 
of Śaka year 1913 (elapsed), i.e. for 12 April 1991.

Number of Kali years = 3179 + 1913 = 5092, since the beginning 
of the Śaka era, i.e. 78 ce, corresponds to 3,179 years (elapsed) of 
Kali-Yuga.

∴ Adhikamāsas in 5,092 years = (1,593,336/4,320,000) × 5,092  
			                      = 1,878.0710.

Taking the integral part of the above value, x1 = 1,878. 
Now, an adhikamāsa is due just after the Caitra māsa under 

consideration. Although the adhikamāsa is yet to occur, it has been 
included already in the above value of x1. Therefore, the corrected 
value of x1 is 1,878 − 1 = 1,877.

Since the month under consideration is Caitra, the number of 
lunar months elapsed in the lunar year, y = 0. The current tithi is 
trayodaśī of kr̥ṣṇa pakṣa so that the elapsed number of tithis is 15 + 
12 = 27, i.e. z = 27.

∴ Number of lunar months completed = (5,902 × 12) + 1,877 + 0 
 					              + 27/30 = 62,981.9

The number of civil days N1 = INT [62,981.9 × 29.530589].
				       = INT [1,859,892.603] = 1,859,892.
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Now, dividing N1 by 7, the remainder is 6; counting 0 as Friday, 
1 as Saturday, etc. the remainder 6 corresponds to Thursday. But, 
from the calendar, 12 April 1991 was a Friday. Therefore, we have 
the actual ahargaṇa N = N1 + 1 = 1,859,893 since the Kali epoch.

AHARGAṆA ACCORDING TO MAKARANDASĀRIṆĪ

The author of the Makarandasāriṇī has incorporated many changes 
to yield better results during his time. He has given ahargaṇavallī 
table for computing ahargaṇa for the given day in sexagesimal 
system by expressing it in units called rāśī, aṁśa, kalā and vikalās. 
The adhikamāsa concept of a lunar calendar is incorporated in the 
tables of ahargaṇavallī in such a way that finding ahargaṇavallī 
from the Makarandasāriṇī tables is easier when compared to the 
procedure for obtaining ahargaṇa from other related astronomical 
texts belonging to Saurapakṣa.

The Ahargaṇavallī expressed in rāśī, aṁśa, kalā and vikalās is 
equivalent to ahargaṇa days expressed as a sum of power of 60. 
The Makarandasāriṇī ahargaṇa is counted from the beginning of 
Kali-Yuga, Vaiśākha śuddha pratipath Friday and is correct to the 
midnight of the central meridian.
Remark: At the beginning of Kali-Yuga, i.e. at the midnight between 
17 and 18 February 3102 bce, all the mean heavenly bodies were 
at 0o (Meṣa). This means that was the instant of the mean Meṣa 
Saṅkrānti and also the mean beginning of the lunar month.
Now, at that moment, mandakendra of the sun, MK = 78o − 0o = 78o.
∴ Mandaphala, Equation of the centre = (14o/2) π sin 78o      
				                = 2o.17947836 
by taking the manda periphery = 14o

converting into days  = 2o.17947836/59'8" = 2.21142111 days.
Since the equation of the centre is positive, true Meṣa Saṅkrānti 

occurs 2 days earlier. That is the beginning of Kali-Yuga, being the 
end of amāvāsya occurs 2 days after the true Meṣa Saṅkrānti. This 
means it is the beginning of Vaiśākha month. In other words, the 
beginning of Caitra will have occurred around 19 January 3102 
bce (30 days before).
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Tables 8.1, 8.2 and 8.3 (below) give ahargaṇavallī for a given date

IMAGE OF AHARGAṆAVALLĪ TABLE

In Table 8.1 ahargaṇavallī is given for the tabulated Śaka years with 
an interval of 57 years, starting from Śaka 1628 up to 2654 [i.e. 1706 
ce to 2732 ce]. In the beginning, the first column gives vallī for 57 
years (called śeṣāṅka kṣepaka) in rāśi, aṁśa, kalā and vikalās. Also the 
last row gives vāra (weekday). The table can be generated by adding 
vallī of kṣepaka year 57, i.e. 0|5|46|59 and vāra 1 to the previous 
entries correspondingly. This is shown in Example 8.1 below.
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Śeṣāṅka	 Rāśi 	 Aṁśa	 Kalā	 Vikalā	 Vāra
Kṣepaka 57

1628 	 0	 5	 46 	 59	 1 
1685 	 8	 7	 42	 50	 0
1742	 8	 13	 29	 49	 1
1799	 8	 25	 3	 47	 3 
1856	 8	 30	 50	 46	 4 
1913	 8	 36	 37	 45	 5
1970	 8	 42	 24	 44	 6
2027	 8	 48	 11	 43	 0
2084	 8	 53	 58	 42	 1
2141	 8	 59	 45	 41	 2
2198	 9	 5	 31	 40	 3
2255	 9	 11	 17	 39	 4
2312	 9	 17	 4	 38	 5
2369	 9	 22	 51	 37	 6
2426	 9	 28	 38	 36	 0 
2483	 9	 34	 25	 35	 1 
2540	 9	 —	 —	 —	 2
2597 	 9	 —	 —	 —	 3
2654	 9	 —	 —	 —	 4

Table 8.1 Āhargaṇavallī during Śaka 1628–2654

Now, 57 solar years = 365.25 × 57 ≈ 20,819 days and 20,819 when 
multiples of 7 are removed gives śeṣa vāra 1 (remaining vāra after 
dividing 20,819 by 7) including leap years.

Dividing 20,819 by 60 we obtain Q1 = 346 and R1= 59

Now, dividing Q1 by 60 we get  Q2 = 5 and R2 = 46

Dividing Q2 by 60 we get 	 Q3 = 0 and R3 = 5

Dividing Q3 by 60 we get 	 Q4 = 0 and R4 = 0.

Thus, vallī corresponding to 57 years (kṣepaka) = R4|R3|R2|R1 = 
0|5|46|59 and vāra = 1.

Table 8.2 gives ahargaṇavallī for the balance years for 1 to 57 in 
rāśi, aṁśa, kalā and vikalās and also vāra. 
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Example 1: 
Śaka Year	 Rāśi	 Aṁśa	 Kalā	 Vikalā	 Vāra
1628	 8	 7	 42	 50	 0
adding	 0	 5	 46	 59	 1
1685	 8	 13	 29	 49	 1
adding	 0	 5	 46	 59	 1
1742	 8	 19	 16	 48	 2

Now, the number of days in a mean lunar month = 29.53058795, 
the number of days in a mean lunar year = 354.3670554 and the 
number of days in year having an adhikamāsa = 383.8976434 = 384 
(approx.) since a lunar year having an adhikamāsa (intercalary 
month) will have 13 lunar months. Now, converting these days of 
a normal lunar year of 354 days and the lunar year with adhikamāsa 
of 384 days into vallī and vāra we obtain vallī = 0|0|5|54 vāra = 4 
and vallī = 0|0|6|24 vāra = 6 respectively. We observe that these 
have been included in ahargaṇavallī. Table 8.2 for the year 1, the 
number of days is taken as 384, since it had an adhikamāsa and 
the corresponding vallī components are given as 0|0|6|24 and 
vāra = 6. For the next year, the number of accumulated days will 
be 384 + 354 = 738 and the vallī components corresponding to 738 
days is 0|0|12|18 and vāra = 4. Similarly, for year 3 the number 
days is taken as 384 + 354 + 354 = 1,092. The vallī components are 
0|0|18|12 and vāra = 0 and so on as shown in the Example 2 below. 
Example 2: 

Year Rāśi Aṁśa Kalā Vikalā Vāra
1 0 0   6 24 6
adding 0 0   5 54 4
2 0 0 12 18 3
adding 0 0   5 54 4
3 0 0 18 12 0
adding 0 0   6 24 6
4 0 0 24 36 6
adding 0 0   5 54 4
5 0 0 30 30 3
adding 0 0   5 54 4
6 0 0 36 24 0
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Koṣtaka			   Ahargaṇavallī
(Years)	 Rāśi	 Aṁśa 	 Kalā 	 Vikalās	 Vāra

 1	 0	 0	 6	 24	 6
 2	 0	 0	 12	 18	 3
 3	 0	 0	 18	 13	 1
 4	 0	 0	 24	 37	 0
 5	 0	 0	 30	 31	 4
 6	 0	 0	 36	 55	 4
 7	 0	 0	 42	 49	 0
 8	 0	 0	 48	 44	 5
 9	 0	 0	 55	 8 	 4
10	 0	 1	 1	 2 	 1
11	 0	 1	 6	 56	 5
12	 0	 1	 13	 20	 4
13	 0	 1	 19	 15	 2
14	 0	 1	 25	 9	 6
15	 0	 1	 31	 33	 5
16	 0	 1	 37	 27	 2
17	 0	 1	 43	 51	 1
18	 0	 1	 49	 45	 5
19	 0	 1	 55	 40	 3
20	 0	 2	 2	 54	 2
21	 0	 2	 7	 58	 6
22	 0	 2	 13	 52	 3
23	 0	 2	 20	 16	 2
24	 0	 2	 26	 11	 0
25	 0	 2	 32	 5	 4
26	 0	 2	 38	 29	 3
27	 0	 2	 44	 23	 0
28	 0	 2	 50	 47	 6
29	 0	 2	 56	 42	 4
30	 0	 3	 2	 36	 1
31	 0	 3	 9	 0	 0
32	 0	 3	 14	 54	 4
33	 0	 3	 20	 49	 2

Table 8.2: Ahargaṇavallī for Years 1-57

Cont.
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Table 8.3 gives pākṣikacālanam (fortnightly values) of ahargaṇavallī 
which is always additive.

In pākṣikacālanam of ahargaṇavallī given in Table 8.3, the last 
but one entry, i.e. the fourth component of pakṣa vallī gives the 
number of civil days at the end of the pakṣa after removing the 
multiples of 60.

Koṣtaka			   Ahargaṇavallī
(Years)	 Rāśi	 Aṁśa 	 Kalā 	 Vikalās	 Vāra

34	 0	 3	 27	 13	 1
35	 0	 3	 33	 7	 5
36	 0	 3	 39	 31	 4
37	 0	 3	 45	 25	 1
38	 0	 3	 51	 19	 5
39	 0	 3	 57	 43	 4
40	 0	 4	 3	 38	 2
41	 0	 4	 9	 32	 6
42	 0	 4	 15	 56	 5
43	 0	 4	 21	 50	 2
44	 0	 4	 27	 45	 0
45	 0	 4	 34	 9	 6
46	 0	 4	 40	 3	 3
47	 0	 4	 46	 27	 2
48	 0	 4	 52	 22	 0
49	 0	 4	 58	 16	 4
50	 0	 5	 4	 40	 3
51	 0	 5	 10	 34	 0
52	 0	 5	 16	 28	 4
53	 0	 5	 22	 52	 3
54	 0	 5	 28	 46	 0
55	 0	 5	 35	 10	 6
56	 0	 5	 41	 5	 4
57	 0	 5	 46	 59	 1
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Table 8.3: Fortnightly Values of Ahargaṇavallī
Lunar Months	 Pakṣas		    Ahargaṇavallī

		  Rāśi	 Aṁśa 	 Kalā 	 Vikalās	 Vāra

Caitra	 Śukla	 0	 0	 0	 15	 1
	 Kr̥ṣṇa	 0	 0	 0	 30	 2
Vaiśākha	 Śukla	 0	 0	 0	 44	 2
	 Kr̥ṣṇa	 0	 0	 0	 59	 3
Jyeṣṭha	 Śukla	 0	 0	 1	 14	 4
	 Kr̥ṣṇa	 0	 0	 1	 29	 5
Āṣāḍha	 Śukla	 0	 0	 1	 43	 5
	 Kr̥ṣṇa	 0	 0	 2	 58	 6
Śrāvaṇa	 Śukla	 0	 0	 2	 13	 0
	 Kr̥ṣṇa	 0	 0	 2	 28	 1
Bhādrapada	 Śukla	 0	 0	 2	 42	 1
	 Kr̥ṣṇa	 0	 0	 2	 57	 2
Āśvayuja	 Śukla	 0	 0	 3	 12	 3
	 Kr̥ṣṇa	 0	 0	 3	 27	 4
Kārttika	 Śukla	 0	 0	 3	 41	 4
	 Kr̥ṣṇa	 0	 0	 3	 56	 5
Mārgaśīrṣa	 Śukla	 0	 0	 4	 11	 6
	 Kr̥ṣṇa	 0	 0	 4	 26	 0
Puṣya	 Śukla	 0	 0	 4	 40	 0
	 Kr̥ṣṇa	 0	 0	 4	 55	 1
Māgha	 Śukla	 0	 0	 5	 10	 2
	 Kr̥ṣṇa	 0	 0	 5	 25	 3
Phālguna	 Śukla	 0	 0	 5	 40	 4
	 Kr̥ṣṇa	 0	 0	 5	 54	 4

Example: At the end of 7 pakṣas, the number of civil days

� � � �

� �

Duration of a lunar month
2

7 29 53058795
2

7

103 3570578 4

.

. 33 357057 43. �

by removing multiples of 60 and taking the integer value. 

PROCEDURE FOR FINDING AHARGAṆAVALLĪ 
FROM THE MAKARANDASĀRIṆĪ TABLES

The working procedure for finding ahargaṇavallī using the 
Makarandasāriṇī tables is as given below:



|  113Makarandasāriṇī

	 i.	 Subtract the nearest Śaka year given in Table 8.1 from iṣṭa 
Śaka (given Śaka year, for which ahargaṇavallī is to be found) 
and obtain the difference called śeṣa (remainder).

	 ii.	 Find the vallī values corresponding to the nearest Śaka year 
given in the table and also for the śeṣa varṣa (remainder) 
using Tables 8.1 and 8.2 respectively. Also find the vāra 
corresponding to these given in the last columns of Tables 
8.1 and 8.2.

	 iii.	 Add the vallī and vāra for the Śaka year and the remainder 
correspondingly. Remove the multiples of 7 from vāra (when 
it exceeds 7).

	 iv.	 The above sum gives grahadinavallī or ahargaṇavallī for the 
iṣṭa Śaka year (given Śaka year).

	 v.	 Now, using Table 8.3, obtain the pakṣavallī and vāra for the 
given pakṣa of the running lunar month of the given Śaka 
year. 

 	 vi.	 Add the pakṣavallī and vāra obtained in the above step (v) to 
the grahadinavallī or ahargaṇavallī of iṣṭa Śaka year obtained 
in step (iv).

	 vii.	 Add the elapsed number of tithis of the running pakṣa of the 
lunar month to the sum obtained above in step (vi) in the 
fourth component of the vallī. This gives the ahargaṇavallī 
or ahargaṇadinavallī for the given day of the Śaka year.

Example: Given date: Śaka 1534 Vaiśākha śukla 15 corresponding 
to 15 May 1612. 
The nearest Śaka year from Table 8.1 is 1514. 
Given Śaka year − Nearest Śaka year from Table 8.1 = 1,534 – 1,514 
						             = 20 (śeṣa)
Now, vallī corresponding to 1514 is → 7|56|08|52 and vāra 5 
Vallī corresponding to śeṣa varṣa, 20 is → 0|02|02|04 and vāra 2 
Pakṣavallī for Vaiśākha śukla 15 is → 0|00|00|44 and vāra 2
Adding → 7|58|11|40 and vāra 2.

Thus, ahargaṇavallī for the given day is 7|58|11|40 and vāra 2 
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(removing multiples of 7).
Note:	  (i) vāra is counted from Sunday as 0.
		  (ii) While adding the vallī components, multiples of 60 are 	

	   removed.
Example: The given date: Śaka 1891 Śrāvaṇa kr̥ṣṇa pratipatā 
corresponding to 31 July 1969.

The nearest Śaka year from Table 8.1 is 1856.
Given Śaka year − Nearest Śaka year from Table 8.1: 			 
		           1891 – 1856 = 35 (śeṣa) 
Now, vallī corresponding to 1856 is → 8|30|50|46 and vāra 4 
Vallī corresponding to śeṣa varṣa, 35 is → 0|03|33|07 and vāra 1
Pakṣavallī for Śrāvaṅa Kr̥ṣṇa pratipatā is → 0|00|02|15 and vāra 1
Adding → 8|34|26|08 and vāra 6 
Thus, ahargaṇavallī for the given day is 8|34|26|08 and vāra 6 
(removing multiples of 7).
Example: Given date: Śaka 1939 Vaiśākha śukla 15 corresponding 
to 10 May 2017, Wednesday 
The nearest Śaka year from Table 8.1 is 1913.
Given Śaka year − Nearest Śaka year from Table 8.1: 			 
		         1939 – 1913 = 26 (śeṣa)
Now, vallī corresponding to 1913 is → 8|36|37|45 and vāra 5
Vallī corresponding to śeṣa varṣa, 26 is → 0|02|38|29 and vāra 3 
Pakṣavallī for Vaiśākha śukla 15 is → 0|00|00|44 and vāra 2
Adding → 8|39|16|58 and vāra 3

Thus, ahargaṇavallī for the given day is 8|39|16|58 and vāra 3 
(removing multiples of 7).

Example: Given date: Śaka 1939 Śrāvaṇa kr̥ṣṇa saptamī (7) 
corresponding to 14 August 2017, Monday.

Nearest Śaka year from Table 8.1 is 1913.
Given Śaka year – Nearest Śaka year from Table 8.1 = 1939 – 1913 	
						             = 26 (śeṣa)



|  115Makarandasāriṇī

Now, vallī corresponding to 1913 is → 8|36|37|45 and vāra 5
Vallī corresponding to śeṣa varṣa, 26 is → 0|02|38|29 and vāra 3 
Pakṣavallī for Śrāvaṇa śukla is → 0|00|02|13 and vāra 0
number of tithis in the given pakṣa is → 0|00|00|07 and vāra 0
Adding → 8|39|18|34 and vāra 1

Thus, ahargaṇavallī for the given day is 8|39|18|34 and vāra 1 
(removing multiples of 7).

OBTAINING AHARGAṆAVALLĪ FROM KALI AHARGAṆA DAYS

Let A be the Kali ahargaṇa for a given date.
	 1.	 Divide A by 60, consider the integer part of the quotient Q1 

and remainder R1.
	 2.	 Divide Q1 by 60, consider the quotient Q2 and the remainder 

R2.
	 3.	 Divide Q2 by 60 and consider the quotient Q3 and remainder 

R3.
	 4.	 Divide Q3 by 60 to get quotient Q4 and remainder R4.

Now ahargaṇavallī for the given date is given by R4|R3|R2 |R1.
Example: Śaka 1849, Mārgaśira śukla 15 Thursday corresponding 
to 8 December 1927.

The Kali ahargaṇa for the given date, A = 1,836,758.
Now, dividing A by 60, integer part of the quotient Q1 = 30,612 and 
remainder 					          R1 = 38
dividing Q1 by 60, integer part of the quotient Q2 = 510 and 
remainder 					             R2 = 12
dividing Q2 by 60, integer part of the quotient Q3 = 8 and  
remainder   					                R3 = 30
dividing Q3 by 60, integer part of the quotient Q4 = 0 and  
remainder 					                R4 = 8

Ahargaṇavallī for the given date is R4|R3|R2 |R1= 8|30|12|38.
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OBTAINING KALI AHARGAṆA DAYS FROM AHARGAṆAVALLĪ

Ahargaṇavallī for the given date is of the form V1|V2|V3 |V4 which 
is equal to the remainders R4|R3|R2|R1, i.e. V1 = R4, V2 = R3, V3 = 
R2, V4 = R1.

Above steps 1, 2, 3 and 4 give the equations.
A = Q1 × 60 + R1, Q1 = Q2 × 60 + R2, Q2 = Q3 × 60 + R3 , and Q3 

= Q4 × 60 + R4.
From the above equations we obtain
A = (Q1 × 60) + R1 

    = ((Q2 × 60) + R2) × 60 + R1 

    = (Q2 × 602) + (R2 × 60) + R1 

    = ((Q3 × 60) + R3) × 602+ (R2 × 60) + R1 

    = Q3 ×603 + (R3 × 602) + (R2 × 60) + R1

    = ((Q4 × 60) + R4) × 603 + (R3 × 602) + (R2 × 60) + R1 

    = (Q4 × 604) + (R4 × 603) + (R3 × 602) + (R2 × 60) + R1

A = (Q4 × 604) + (R4 × 603)+(R3 × 602) + (R2 × 60) + R1.           (1) 

In the process of finding vallī from ahargaṇa we repeat the 
division by 60 till we get the quotient 0 and remainder less than 
60. In the 4th stage we obtain Q4 = 0 and R4 < 60. In view of this 
equation (1) becomes 

      A = (R4 × 603) + (R3 × 602) + (R2 × 60) + R1,
i.e. A = (V1 × 603) + (V2 × 602) + (V3 × 60) + V4, 	              (2)

where V1, V2, V3, V4 are components of vallī (given in the  
Makarandasariṇī Tables 8.1-8.3). 

Example: For the given date: Śaka 1891 Śrāvaṇa kr̥ṣṇa pratipatā 
corresponding to 3 July 1969, Thursday.
dinavallī for the given date = 8|34|26|8, i.e. 				  
	 V1 = 8, V2 = 34, V3 = 26, V4  = 8. 
ahargaṇa, A = (V1 × 603) + (V2 × 602) + (V3 × 60) +V4

	       = 8 × 603 + 34 × 602 + 26 × 60 + 8 				  
	       = 1,728,000 + 122,400 + 1,560 + 8 = 1,851,968. 

Using modern tables, ahargaṇa for 31 July 1969 Thursday is 
1,851,968.



|  117Makarandasāriṇī

Example : Given date: Śaka 1534 Vaiśākha śukla 15 corresponding 
to 15 May 1612 Tuesday.

ahargaṇavallī = 7|58|11|40, i.e. V1 = 7, V2 = 58, V3 = 11, V4 = 40.
∴ ahargaṇa, A = (V1 × 603) + (V2 × 602) + (V3 × 60) + V4 
		      = 7 × 603 + 58 × 602 + 11 × 60 + 40 = 1,721,500.
Using modern tables, ahargaṇa for 15 May 1612 is 1,721,500.

Example: Given date: Śaka 1939 Vaiśākha śukla 15 corresponding 
to 10 May 2017 Wednesday.
ahargaṇavallī = 8|39|16|58, i.e. V1 = 8, V2 = 39, V3 = 16, V4 = 58. 
∴ ahargaṇa, A = (V1 × 603) + (V2 × 602) + (V3 × 60) + V4 
	            = 8 × 603 + 39 × 602 + 16 × 60 + 58 = 1,869,418.

Using modern tables ahargaṇa for 10 May 2017 is 1,869,418.
Example: Given date: Śaka 1939 Śrāvaṇa kr̥ṣṇa saptamī (7) 
corresponding to 14 August 2017 Monday.
ahargaṇavallī = 8|39|18|34, i.e. V1 = 8, V2 = 39, V3 = 18, V4 = 34.
ahargaṇa, A = (V1 × 603) + (V2 × 602) + (V3 × 60) + V4 
	       = 8 × 603 + 39 × 602 + 18 × 60 + 34 = 1,869,514.

Finding True Positions of Five Star Planets 
In finding the true position of star planets we need to apply 
two major corrections, viz. mandaphala (the equation of centre) 
and śīghraphala (the equation of conjunction). According to the 
Makarandasariṇī, mandaphala of the five star planets differ from 
those of the other texts. In the Sūryasiddānta, the true position of 
star planet is obtained by applying successively four corrections. 
Among these, manda correction is applied twice in between two 
śīghra corrections. On the other hand, the Makarandasariṇī simplifies 
the procedure by reducing it to three corrections. Here manda 
correction is applied only once between two śīghra corrections. In 
the process, mandakarṇa has consolidated the two mandas of the 
Sūryasiddānta into a single equation in the Makarandasariṇī. This 
makes the mandaphala value of the Makarandasariṇī differ from 
those of other texts.
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Mean sun is taken as śīghrocca for Kuja, Guru and Śani. For 
Budha and Śukra, budhocca and Śukra śīghrocca are obtained as 
explained in the text. Mean sun is also considered as Mean Budha 
and Mean Śukra. 

Śīghrakendra = mean planet – Śīghrocca

If śīghrakendra is greater than 6R, then subtract it by 12R. 

PROCEDURE FOR FINDING ŚĪGHRAPHALA 
USING THE MAKARANDASARIṆĪ TABLES

	 1. 	Find śīghrakendra of the planet.
	 2.	 Find the values (in degrees, etc.) in the column headed by 

the number in aṁśa (degree) place of śīghrakendra, using 
śīghra-mandaphala table of the corresponding planet. This is 
called as first śīghrāṅka.

	 3.	 Find the values from the next column (agrimāṅka). This is 
called as second śīghrāṅka.

	 4.	 Consider the difference (3) – (2) and multiply this difference 
by the kalā, vikalā of śīghrakendra and divide by 60 to obtain 
the result in kalās.

	 5.	 The above result obtained in (4) is added to or subtracted 
from first śīghrāṅka obtained in step (1). This is śīghraphala 
in degree, etc.

	 6.	 Śīghraphala is additive if śīghrakendra is < 180˚ and is 
subtractive if śīghrakendra is > 180˚.

FINDING MANDAPHALA USING TABLES

	 1.	 Find mandakendra of planet where 
			        Mandakendra = mean planet − mandocca
	 2.	 If mandakendra > 6R, then subtract it from 12R and consider 

degrees, etc. 
	 3. 	Find the entries in the column headed by the number 

present in degree position of mandakendra. This is called first 
mandāṅka. Also find the entries in the next column to this 
number (agrimāṅka) using mandaphala table. This is called 
second mandāṅka. 
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	 4.	 Consider the difference between first and second mandāṅkas 
multiply this difference by kalā, vikalā, etc. of mandakendra 
and divide by 60 to obtain the result in kalās.

	 5.	 Add this to or subtract kalā from first mandāṅka obtained 
against degree number of mandakendra. The result is called 
mandaphala. 

APPLICATION OF ŚĪGHRA AND MANDA CORRECTIONS

	 1.	 Obtain śīghraphala as explained earlier, consider half of it 
(ardhaśīghraphala).

	 2.	 This half śīghraphala is added to or subtracted from mean 
planet to get half śīghra corrected mean planet.

	 3.	 Find mandaphala and add (or subtract) mandaphala as it is to 
mean planet to get manda corrected planet.

	 4.	 Considering manda corrected planet as mean planet, obtain 
second śīghraphala and correct the manda corrected planet with 
śīghra correction. This gives true position of the planet. I.e.

		  if 	 MP ≡ mean planet
				    P1 = ½ śīghra corrected planet
				    P2 = manda corrected planet
				    P3 = true planet, 
		  then
				    P1 = MP + ½ śīghraphala
				    P2

 = MP + mandaphala
				    P3 = P2 + śīghraphala.

FINDING TRUE DAILY MOTIONS OF PLANETS

	 1.	 Consider the mandāṅka difference obtained in finding 
mandaphala.

	 2.	 Multiply this mandāṅkāntara by mean daily motion of the 
planet. The result will be in kalās.

	 3.	 Add this to or subtract this from (according as makarādi 
r̥ṇam and karkādi dhanam) mean daily motion to get manda 
corrected motion. 

	 4.	 Śīghrakendra gati = ṣīghrocca gati – manda corrected motion.
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	 5.	 Consider the difference between śīghrāṅkas obtained during 
second śīghra correction (antimaśīghraphalam) and multiply 
this difference by śīghrakendragati. Divide the product by 60.

	 6.	 The above result is added to or subtracted from manda corrected 
motion to obtain corrected daily motion of the planet.

	 7.	 Do the reverse for retrograde motion. 
Note: In the present paper the tables for the manda and śīghra 
corrections are given for Kuja and Budha. The tables for other 
bodies are not given since these tables occupy a lot of space.

Kuja’s Mandaphala and Śīghraphala Table
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Example: Finding True Kuja	
Mean Kuja = 9R29˚21'13"; Mean Sun = 1R4˚57'24" (mean positions are 
taken from Viśvanātha’s example for the date Śaka 1534 Vaiśākha 
śukla 15 corresponding to 15 May 1612).

Śīghrakendra = mean Kuja – mean Ravi (śīghrocca)
		   = 9 | 29 |21|13 – 1|4|57|24
		   = 8|24|23|49

Since śīghrakendra > 6R, subtracting it from 12R, we get
Śīghrakendra = 12R – 8R |24˚|23'|49" = 3R5˚36'11" = 95˚36'11"
Bhujāṁśa of śīghrakendra = 95˚36'11"
Number degree position = 95 remaining kalādi = 36'.
From the table of manda and śīghraphala for Kuja the entry in 

the column headed by 95, first śīghrāṅka = 34|13 second śīghrāṅka 
= 34|29

	 difference (first – second) = 34|13 – 34|29 = − 0|16.
Now	

	 Difference between Śīghrāṅka × kalādi of bhujāṁśa 
				    60

	           �
�

�
�

� � �
0 916 36 11

60
38 56
60

0 9 38 93 0 9 39.

Now, first śīghrāṅka = (− 0|9|39) = 34|13 + 0|9|39 = 34|22,
i.e. 	        śīghraphala = 34|22|39.
P1 = ½ śīghra corrected planet 
    = mean planet – ½ śīghraphala
    = 9R29˚21'13" + (34|22|39)/2
P1 = 10R16˚32'32".
Mandocca of Kuja = 4R|10˚
Mandakendra = P1, ½ śīgh. corr. Kuja – Mandocca
		     = 10R16˚32'32" − 4R|10˚ = 6R 6˚32'32".5.
Since mandakandra > 6R, bhujāṁśa of mandakandra = 12R – 6R 6˚32'32".5
						       = 173˚27'27".5
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Mandāṅkas in the columns headed by 173 and 174; first 
mandāṅka = 1|36, second mandāṅka = 1|22. Difference = 1|36 – 
1|22 = 0|14.
Now, 

	 Difference between mandākas × kalādi of bhujāṁśa 
				    60

	  �
� � ��

�
0 14 27 27 5

60
0 6 24 42

.
. .

Mandaphala = first mandāṅka – 0|6|24.42
		   = 1|36 – 0|6|24.42 = 1|29|36 (+ve)
P2, manda corrected Kuja = mean planet + mandaphala
			             = 9R29˚21'13" + 1˚|29'|36"
			             = 10R00˚50'49" = 10R0˚50'49"
Second śīghrakendra = P2, 
manda corrected planet – śīghraocca
			             = 10R0˚50'49" – 1R|4˚|57'|24"
			             = 265˚53'25" = 8R25˚53'25"
Bhujāṁśa of śīghrakendra	 = 12R – 8R25˚53'25"
				    = 94˚6'35"	
first śīghrāṅka = 33|57 (corresponding to 94)
second śīghrāṅka = 34|13 (corresponding to 95)

Difference × kalādi
                60

�
�� ��

� �
33 57 34 13 6 35

60
0 4 45 33

' "
. .

Śīghraphala = First śīghrāṅka – (– 0|1|45.33)
		  = 33|57 + 0|1|45.33 = 33|58|45.33
Śīghra corrected Kuja = manda corrected Kuja + śīghraphala 
			       = 10R0˚50'49" + 33˚58'45".33
i.e. true Kuja = 11R 4˚49'34"

To find True daily motion of Kuja:
	 Difference between mandāṅkas = 0|14 = 14
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	 Mean motion of Kuja = 31|26|
	 Now, 

14 31 26
60

440 4
60

7 20 4' '�
� � �( )ve  

	 Manda corrected daily motion = mean motion ± 7|20|4
				                = 31|26 + 7|20 = 38|46
	 Śīghrocca gati = daily motion of Ravi = 59|8.
	 Now,
	 Śīghrakendra gati = śīghrocca gati – manda corrected gati
			     = 59|8 – 38|46
			     = 20|22
	 Difference between śīghrāṅkas of second śīghra correction 
		  = 33|57 – 34|13 = – 0|16 = 16.
	 Now, 

	
(Śīghrakendra gati × 16)
	                    60	 	

= =
325 52

60
5 25.

	 True daily motion of Kuja = manda corrected motion + 5|25
				       = 38|46 + 5|25

				       = 44'|11".
Example 2: Finding true position of Budha and true daily motion 
of Budha (mean Budha = mean Ravi)
Śīghrakendra of Budha = mean Budha –  śīghrocca of Budha

		              = mean Sun – budhocca
		              = 1R4˚57'24" – 3R1˚44'33"
		              = – 56˚47'9" + 12R

		              = 10R 3˚12'|51"|
Bhujāṁśa = 12R – 10R3˚12'|51"| = 56˚47'|9"|
First śīghrāṅka corresponding to 56 = 14|10
Second śīghrāṅka corresponding to 57 = 14|23

Śīghraphala = first śīghrāṅka – difference of śīghrāṅka × kalā
	                       60
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Budha’s Mandaphala and Śīghraphala Table

	              = 14|10 – 14 10 14 23 4 9
60

�� �� � ���

�
�

�

�
�

7

	              = 14|10 – (– 0|10|12.95)
	              = 14|20|12.95.
P1 = Half śīghra corrected Budha = mean Budha + ½ śīghraphala
				            = 1R4˚57'|24"| + 14|20|12.95
				           = 34˚57'|24"| + 7|10|6.48
				           = 42˚7'|30"| = 1R12˚7'|30"|
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P1 = Half śīghra corrected Budha = 1R10˚7'|30"|.
Mandocca of Budha = 7|10.
Mandakendra = Half śīghra corrected Budha – mandocca
		     = 1R12˚7'|30"| − 7R10˚
		     = 182˚7'|30"| = 6R2˚7'|30"|
Bhujāṁśa of mandakendra = 360˚ – 182˚7'|30"| = 177˚52'|30"|
Mandaphala

		    = First Mandāṅka – 
(  Differrence in  ) × ( kalādi of  )       mandāṅkas	        bhujāṁśa
	               60

		    = 0 15
0 15 0 10 52 30

60
0 15 0 4 22�

�� �� � ��
� �

		    = 0|10|37 (− ve)
Manda corrected Budha = mean Budha (mean Sun) – mandaphala
			         = 1R4˚57'|24"| − (− 0|10|37)
			         = 1R4˚57'|24"| + 0˚10'|37"|
			         = 1R5˚8'|1'| = 35˚8'|1"|
Second śīghrakendra = manda corrected Budha – śīghrocca of Budha
		              = 1R5˚8'|1"| – 3R 1˚44'|33"|
		              = 303˚23'|28"| = 10R3˚23'|28"|
Bhujāṁśa of SK = 12R – 10R3˚23'|28"| = 56˚36'|32"|
Śīghraphala 

	         = First śīghrāṅka – 
( Difference between ) × ( kalādi of  )           śīgrāṅkas	                  bhujāṁśa
	               60

	         = 14|10 – 14 10 14 23 36 32
60

�� ���

�
�

�

�
�

' " 	

	         = 14|10 – (– 0|7|54.93)
	         = 14|17|54.93
True Budha = manda corrected Budha – śīghraphala
		   = 1R5˚8'|1"| – 14˚17'|54"|.93.
True Budha = 1R19˚25'|55"|.93 = 49˚25'|55"|.93. 
To find true daily motion of Budha
	 Difference between mandāṅkas = (0|15 – 0|10) = 0|5
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	 Mean motion of Budha = mean motion of Sun = 59|8
	 (Mean motion × difference between mandāṅkās) 
		  = 59|8 × 0|5
		  = 4|55|40 (−ve).
	 Manda corrected motion = 59|8 – 4|55 = 54|13.
	 Mean daily motion of śīghrocca of Budha = 245|32.
	 Śīghrakendra gati = śīghrocca gati – manda corrected gati 
			     = 245|32 – 54|18 = 191|19.
	 Śīghragatiphalam 
	      = (śīghrakendragati) × (difference between second śīghrāṅkas)

	     = (191|19) × (14|10 – 14|23)
	     = – 41|27.
	 Śīghra corrected motion = manda corrected motion – (– 41|27)
			               = 54 | 13 + (41|27)
			               = 95||40|,
	 i.e. true daily motion of Budha = 95'40".

Angular Diameter
Diameters of the sun, the moon and the earth’s shadow are 
important in the computation of lunar and solar eclipses. In 
astronomy, the sizes of objects in sky are often given in terms 
of their angular diameters as seen from the earth. The angular 
diameter of an object is the angle the object subtends as seen by the 
observer on the earth. These angular diameters play an important 
role in the procedures of computation of lunar and solar eclipses, 
conjunction, occultation and transits.

In Indian classical astronomical texts, the procedures for 
calculating angular diameters (bimbas) are given in different forms 
in different texts. Majority of the Siddhāntic texts give bimbas in 
terms of the true daily motions of the sun and the moon. But some 
other texts including astronomical tables like the Makarandasāriṇī, 
determine bimbas as a function of running nakṣatrabhoga or manda 
anomalies of the sun and the moon.
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Image of the Table for Angular Diameters

The diameters are expressed in different units in different 
texts. The famous classical Siddhāntic text the Sūryasiddhānta 
gives diameters in terms of linear unit yojana. In Brahmagupta’s 
Khaṇḍakhādyaka and the vākya system, the angular diameters are 
given in minutes of arc (kalās), whereas in the Karaṇakutūhala of 
Bhāskara II and the Grahalāghava of Gaṇeśa Daivajña, the unit used 
for diameter is aṅgula. 

OBTAINING DIAMETERS OF THE SUN,
THE MOON AND THE EARTH’S SHADOW-CONE 
ACCORDING TO THE MAKARANDASARIṆĪ

The following tables (Tables 8.4-8.5) are given in the Makarandasariṇī 
for computing angular diameters of the sun, the moon and earth’s 
shadow-cone. In Table 8.4, the angular diameter of the moon 

Table 8.4: Table for Finding the Moon’s Diameter

Nakṣatrabhoga	 56	 57	 58	 59	 60	 61	 62	 63	 64	 65	 66 
(in ghaṭis)

Candra bimba	 11	 11	 11	 10	 10	 10	 10	 10	 10	 9	 9 
(in aṅgulas)	 34	 22	 10	 59	 48	 37	 27	 17	 17	 58	 48

Pāta bimbas	 29	 28	 28	 27	 27	 26	 25	 25	 24	 24	 24 
(in aṅgulas)	 34	 54	 16	 38	 2	 27	 13	 20	 49	 18	 48

Bimba candra	 857	 842	 827	 813	 800	 787	 774	 762	 750	 738	 727
bhukti (in kalās)
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(candra bimba) and earth’s shadow (pāta bimba) are given for 
duration of a nakṣatra (nakṣatrabhoga) over the range from 56 to 66 
ghaṭis. Also the corresponding moon’s motion is given in the last 
row. Note that the word pāta is used for the shadow and not for 
the moon’s node.

In Table 8.5, the angular diameters of the sun (ravi bimba) 
and correction to shadow diameter (pāta bimbas) are given for 
12 saṅkrāntis. Corresponding motion the sun (ravi bhukti) is also 
given in the last row.

PROCEDURE FOR FINDING DIAMETERS 
ACCORDING TO THE MAKARANDASARIṆĪ

The following procedure is given in the Makarandasariṇī for finding 
diameters:
	 1.	 Find the gataeṣya ghaṭī (duration) of the running nakṣatra at 

parvānta (full moon day or new moon day).
	 2.	 Consider the entry in the column headed by the number 

represented by gataeṣya ghaṭī of nakṣatra (taking only integer 
part of ghaṭī) corresponding to the row of candra bimba.

	 3.	 Find the entry in the next column (next to the column headed 

Saṅkrānti 	 Ravi Bimba 	 Pāta Bimbas 	 Ravi Bhukti 
	 (in Aṅgulas)	 (in Aṅgulas)	 (in Kalās)

Meṣa	 10			 46 	 0 	 22 		 58		 45
Vr̥ṣabha	 10		 35	 0	 31		  57		 42
Mithuna	 10 	 27		 0	 37		  56		 58
Karkātaka	 10 	 26 	 0 	 37 		 56		 57
Siṁha	 10		 33	 0	 31		  57		 33
Kanyā	 10		 44	 0	 22		  58		 34
Tulā	 10 	 57		 0	 14 		 59 		 42
Vr̥ścika	 11		   8	 0	 5		  60		 52 
Dhanuṣ	 11		 14		 0	 1		  61		 18
Makara	 11 	 15		 0	 0		  61		 22
Kumbha	 11		   8	 0	 5		  60		 15
Mīna	 10		 58	 0	 13		  59		 18

Table 8.5: Table for Finding the Sun’s Diameter
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by gataeṣya ghaṭī of nakṣatra) corresponding to the row of 
candra bimba. This entry is agrimāṅka.

	 4.	 Find the difference called agrimāntara between the above 
two entries obtained from steps 2 and 3. Now the remaining 
fractional part of gataeṣya ghaṭī or vighaṭī is to be multiplied 
by this difference agrimāntara and divided by 60. Add 
or subtract the result obtained to the first value or from 
agrimāṅka (the entries obtained in steps 2 and 3) respectively.

	 5.	 The above result gives angular diameter of the moon (candra 
bimba) in aṅgulas.

	 6.	 Similarly, we find the diameter of earth’s shadow-cone 
(bhūbhābimbam) using Table 8.4 following the same 
procedure. In this case, instead of candra bimba row, the 
values corresponding to the row of pāta bimbas are to be 
considered. This diameter of shadow-cone should be 
corrected using Table 8.5 as explained in the following steps.

	 7.	 Find the saṅkrānti at parvānta by calculating the sun’s position 
expressed in rāśi, aṁśa, kalā and vikalās. Obtain pāta bimba 
value corresponding to running saṅkrānti and to the next 
saṅkrānti using Table 8.5 and take the difference between 
the two values.

	 8.	 Multiply the above difference between two values by aṁśa, 
kalā and vikalās (degree, minutes and seconds) of the sun’s 
position considered in step 7 and divide the product by 30. 
This result will be in aṅgulas. 

	 9.	 Add the above result to the pāta bimba value corresponding 
to running saṅkrānti obtained in step 7. This is the correction 
factor to be added to the pāta bimba obtained using Table 8.5 
in step 6 to get corrected angular diameter of earth’s shadow 
(bhūbhābimbam).

	 10.	 Same procedure is followed to find the diameter of the sun 
using Table 8.5 corresponding the saṅkrānti at new moon on 
the day of solar eclipse.

Example: Given date: Śaka 1534 Vaiśākha śuddha 15, Monday.
For the above given date: 
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Parvānta ghaṭī = 54|40 ghataeṣya ghaṭī (duration) of Anurādhā nakṣatra
	           = 58|36 ghaṭi

True position of the sun = 1R6°30'37" 
True position of the moon = 7R6°34'35"
Rāhu = 1R14°18'11".

To find diameter of the moon: Now from Table 8.4 the entry 
corresponding to candra bimba row in the column headed by 
gataeṣya ghaṭī number 58 is 11|10.

The entry corresponding to candra bimba row in the column 
headed by next number 59 (agrimāṅka) is 10|59.

The difference agrimāntara = 10|59 − 11|10 = − 0|11
The remaining fractional part of gataeṣya ghaṭī or vighaṭī = 36
Now, (difference × remainder)/60 = [(−11) × 36]/60 = − 396/60 
				               = − 6.6 = − 6|36 
				               = − 0|6|36 aṅgulas
Diameter of the moon (candra bimba) = 11|10 + (− 0|6|36) 
					       = 11|4 aṅgulas.

To find diameter of the earth’s shadow-cone: From Table 8.4 the entry 
corresponding to pāta bimba row in the column headed by gataeṣya 
ghaṭī number 58 is 28|16.

The entry corresponding to pāta bimba row in the column 
headed by next number 59 (agrimāṅka) is 27|38.

The difference = 27|38 − 28|16 = − 0|38
(difference × remainder)/60 = [(− 38) × 36]/60 = − 22|48 ≈ 22
Diameter of the shadow-cone (bhūbhābimbam) = 28|16 + (− 0|38) 
						       = 27|54
Correction to bhūbhābimbam using Table 8.5:
True position of the sun at parvānta = 1R6°30'37" 
The number 1 in the rāśi position indicates that the current 

saṅkrānti is Vr̥ṣabha and the remaining degree, etc. in the sun’s 
position is 6°30'37".
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Now, the entries in the column of Vr̥ṣabha and Mithuna 
Saṅkrānti corresponding to pāta bimba are 0|31 and 0|37 
respectively. The difference = 0|37 − 0|31 = 0|6.

(difference × remainder)/30 = (6 × 6°30'37")/30 
				       = 1.3020556 ≈ 1 = 0|1 aṅgulas 
(ignoring the fraction) 
Correction to bhūbhābimbam = 0|31 + 0|1 = 0|32 aṅgulas 
Corrected bhūbhābimbam = 27|54 + 0|32 = 28|26 aṅgulas

Example: To find diameter of the sun: Given date: Śaka 1532 
Mārgaśira kr̥ṣṇa, 30 Wednesday.

Parvānta ghaṭī = 11|59 True Sun = 8R5°26'20". 
The number 8 in the rāśi position indicates that the current 

saṅkrānti is Dhanu and the next is Makara. The entries in the 
column headed by Dhanu and Makara corresponding ravi bimba 
in Table 8.5 are 11|14 and 11|15 respectively.

Their difference = 11|15 − 11|14 = 0|1
Now the sun’s diameter = 11|14 + (difference × remainder)/30 
			          = 11|14 + (0|1 × 5°26'20")/30 
			          = 11|14 + 0|10|52
			          = 11|24|52 ≈ 11|25 aṅgulas.

Remark: The dates given in the above examples are taken from 
Viśvanātha’s commentary on the Makarandasariṇī.

Conclusion
In the present paper, we have discussed the procedures for 
determining ahargaṇa, true positions of the star planets and 
the angular diameters of the sun, the moon and the earth’s 
shadow according to the Makarandasāriṇī in detail with concrete 
examples. It is shown how easy it is to convert a given traditional 
lunar calendar date to Kali days using vallī components of the 
Makarandasāriṇī. 

Interestingly, the Makarandasāriṇī simplifies the procedure 
for computation of true planets, composing separate tables 
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for mandaphala by consolidating the two conventional ways of 
applying manda equation twice. Also it gives the procedure for 
obtaining the angular diameters using the total duration of the 
running nakṣatra and the sun’s saṅkrānti taking the readily available 
values from the traditional almanac (pañcāṅga).
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Manuscripts on Indian Mathematics

K. Bhuvaneswari

As the famous quote states:

;Fkk f'k•k e;wjk.kka ukxk.kka e.k;ks ;Fkk A
r}}snkÄ~xlkL=kk.kka xf.kra ewfèZu fLFkrEk~ AA 

		   – Vedāṅga Jyotiṣa v. 4 

Like the crests on the head of peacocks, like the gems on the heads 
of the cobra, mathematics is at the top of the Vedāṅgaśāstras.

Also, Mahāvīrācārya, in his Gaṇitasāra-Saṁgraha (I.16), states:

cgqfHkfoZçykiS% fda =kSyksD;s lpjkpjs A
;fRdf×k~p}Lrq rRloZa xf.krsu foukufgAA

Whatever is there is all the three worlds, which are possessed 
of moving and non-moving beings, all that indeed cannot exist 
as apart from mathematics.

The significance of mathematics and its application in all walks 
of life was well realized by the great seers of the Vedic period, 
the poets of the classical period and kings of the past. In olden 
days, mathematics was included in the Jyotiṣaśāstra, which is one 
of the six Vedāṅgas. Hence, numerous works were written on 
mathematics, astrology and astronomy, the three major divisions 
of the Jyotiṣaśāstra.
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Also, India has had a continuous lineage of mathematicians 
and they had been pioneers in introducing various mathematical 
concepts. Their seminal contributions had been the foundations 
of many branches of mathematics and have led to further 
developments. Their works are generally in padya (verse) form and 
are mostly accompanied by prose commentaries of the author or 
other scholars. There are many commentaries for each work by 
different scholars.

As Sanskrit was the language of the learned and the medium 
of higher education since the Vedic period, these texts and 
commentaries are in Sanskrit, mostly available as manuscripts 
either in palm leaf or in paper.

Manuscripts are carriers of culture and also act as link between 
the present and the past. Hence, it becomes necessary that these 
manuscripts are preserved well for the benefit of the posterity. 
Since they are subject to easy destruction, preserving the old text is 
always a difficult task. There had been lipikāras (scribes) appointed 
by the kings to make copies of the available manuscripts, in the 
script of the existing era. In spite of all such efforts, most of the 
manuscripts available now are not older than 600 years. A few are 
1,000 years old and some fragments of manuscripts are even, it is 
said, 2,000 years old.

These manuscripts are preserved in various manuscript 
libraries in and outside India. There are more than 300 manuscript 
libraries both small and large all over India; and India is estimated 
to have nearly three crore manuscripts.

Some of the major manuscripts libraries in India are:
	 1.	 The Sarasvati Bhavan Library of the Government Sanskrit 

College, Benares now attached to Sampurnananda Sanskrit 
University, established in 1791.

	 2.	 Tanjore Maharaja Serfoji’s Sarasvati Mahal Library 
(TMSSML), established during the early part of nineteenth 
century.

	 3.	 Ranvir Sanskrit Residential Institute, Jammu, established in 
1857.
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	 4.	 Government Oriental Manuscripts Library (GOML), 
Chennai, taking care of manuscripts since 1870.

	 5.	 Adyar Library and Research Centre, Chennai, established 
in 1886.

	 6.	 Government Oriental Library, Mysore, established in 1891.
	 7.	 Central Library, Baroda, preserving Sanskrit manuscripts 

since 1893.
	 8.	 Bhandarkar Oriental Research Institute, Bombay, established 

in 1917.
	 9.	 Maharaja Palace Library, Trivandrum, established between 

1817 and 1827 and later amalgamated into Oriental 
Manuscript Library, Kerala University in 1937.

	 10.	 Sri Venkateswara University Oriental Research Institute, 
established by Sri Venkateswara University in 1939.

	 11.	 Kuppuswami Sastri Research Institute, Chennai, established 
in 1944.

As far as Tamil Nadu is concerned, the GOML, Adyar Library 
& Research Centre and the TMSSML have a big collections of 
manuscripts. In view of the vastness of the manuscripts on Jyotiṣa, 
I restrict myself to the manuscripts on mathematics alone, available 
in Tamil Nadu, for critical edition, publication and further research.

Līlāvatī of Bhāskara II of Twelfth Century
It is the most famous treatise in ancient Indian mathematics. It is 
a part of the much larger treatise Siddhānta-Śiromaṇi. It is a work 
on arithmetic.

There are as many as sixty-eight commentaries on this work. 
But only a few (of Gaṇeśa, Mahīdhara and Śaṅkaranārāyaṇa) have 
been edited and printed so far. Some of the commentaries available 
for further research are:

GOML – MD-13484; Paper MS; Devanāgarī; Complete

deZçnhfidk/Karmapradīpikā by Nārāyaṇa of sixteenth century.
It begins with guruvandanam to Bhāskara and Āryabhaṭa
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ç.kE; HkkLdja nsoekpk;kZ;ZHkVa rFkk A
O;k[;k fofy[;rs yhykoR;k% deZçnhfidk AA

The work ends again with salutations to Āryabhaṭa and also carries 
the name of the author as well.

,rUukjk;.kk[;su jfpra deZnhidEk~ A
lfUr"Brq ija yksds uekE;k;ZHkVa lnk AA

GOML – MD-13486; Palm Leaf; Grantha; Incomplete
yhykorhfoykl%/Lilāvatīvilāsa by Raṅganātha of fifteenth century.
Stating the purpose of the work he is about to compose, the author 
also mentions his name in the following śloka in the beginning of 
his work:

yhykorhoqyklks¿;a ckykuUnSd dkj.kEk~ A
fy[;rs jÄ~xukFksu lksiiR;k fujFkZdEk~ AA

This manuscript is slightly injured and breaks off in the Khaṭa 
Vyavahāra.

GOML – MT-3938; Palm Leaf; Grantha; Slightly Injured; Incomplete
yhykofrfoykl%/Lilāvatīvilāsa by an anonymous author. It begins with 
salutations to his guru and Goddess Sarasvatī.

uRok xq#pj.kkEcqteEcka okxh'ojha p okfDl¼~;S A
yhykorhfoykla jp;s jfldtuekSfylUrq"VÔS AA

The author has not mentioned the name of his guru. Since the text 
is incomplete there is no colophon to find the name of the author 
or the name of his guru.

GOML – MT-5160; Paper MS; Devanāgarī; Complete
yhykorhO;k[;k / Lilāvatīvyākhyā by Parameśvara of fourteenth century, 
pupil of Rudra. 

After offering salutations to gods, praying for the removal of 
obstacles and successful completion of the work in the first two 
ślokas, the author mentions his name as Parameśvara:
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y{ehHkwfoylRik'oZ% lglzkfnR;lafuHk% A
	 KkuewfrZjuk|Urks gfjfj"Va nnkrq u% AA

ç.kekfe x.ks'kkua ikoZR;k vÄ~dlafLFkrEk~ A
	 okxh'ojhefi rFkk Jh#æa p Ñikfuf/Ek~ AA

uhyk;k% lkxjL;kfi rhjLFk% ijes'oj% A
O;k•;kueLeS ckyk; yhykoR;k% djksE;gEk~ AA

A copy of this MS is available in Adyar Library and Research 
Institute.

GOML – MT-5244; Palm Leaf MS; Devanāgarī; Complete
loZcksf/uh O;k[;k/Sarvabodhinīvyākhyā by Mahāpātra Śrīdhara of 
seventeenth-eighteenth century, s/o Nima and Gaurī.

It begins with an invocation to God Gaṇeśa and Goddess 
Sarasvatī: 

HkÙkQkuqxzgdkE;;k futrukS jkxkfrjsda n/&
	 f}?uèokUr furkUr'kkfUrdj.ks lw;kZ;ek.kfLFkfr% A
foHkzk.kks jnuk{k lw=kij'kwe~ gLrkEcqtSekZsnda
	 dkea iwj;rq çdkeef•ya fo?us'ojks es lnk AA
f'kfrrj #fpa loZtMRoèoaldkfj.khEk~ A
	 lokZejkfpZrinkega oUns ljLorhEk~ AA

The author mentions his name and the name of the commentary 
in the following śloka:

xq#iknçlknsu Jh/js.k f}tUeuk A
ikVhxf.kr Vhds;a fØ;rs loZcksf/uh AA

In the ending verses, the author mentions about his father and 
mother:

fo|k"kV~ =k;osfnuks e•'krS% iwrL; rL;kUo;s 
	 df'píSofonka ojks¿tfu egkik=kks fuek[;% dfo% A
xkS;k± ekrfj gUr rsu tfur% çhfr ço`¼~;S lrka 
	 ikVha xkf.krdheVhdkrjka fo}}j% Jh/j% AA
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And the work ends with maṅgala śloka:

Vhdk foKtukuUnnkf;uh loZcksf/uh A
t;rq O;ÙkQxf.krkUo;U;k;ØeksTToyk AA

TMSSML – 11592; A Paper MS; Devanāgarī; Incomplete

yhykorh O;k[;k/Lilāvatīvyākhyā of Keśava of fourteenth century.
The name of the author is known from the title page. The 

colophon is simple to contain only the name of the chapter.

Bījagaṇita of Bhāskara II of Twelfth Century
It is another famous work of Bāskara II, wherein algebra is dealt 
with. This is the second part of the treatise Siddhānta-Śiromaṇi.

COMMENTARY ON BĪJAGAṆITA

There are six commentaries on the Bījagaṇita. Of these, the 
Bījapallava of Kr̥ṣṇa Daivajña has been already studied by Sita 
Sundar Ram and published by The Kuppuswami Sastri Research 
Institute in 2012.

Of the others, the available commentary is the Bījagaṇita-
vyākhyā of Sūryadāsa.

GOML – MD-13462; Palm Leaf; Grantha; Slightly Injured; Incomplete
chtxf.krO;k[;k/Bījagaṇita-vyākhyā by Sūryadāsa, s/o Jñānarāja. 

The author gives details about him in the beginning as, he is 
a pupil of Jñānarāja and also his son:

NUnksyÄ~ÑfrdkO;ukVdegklÄ~xhr'kkL=kkFkZfoRk~ A
ra oUns futrkreqÙkexq.ka JhKkujkta xq#Ek~ AA

and mentions his name in the following verse:

foeqX/kuka çhR;kn`rln;psrk% ifjferk
feeka O;k[;kukFk± lifn jp;s lw;Zx.kd% AA

It is stated that the entire composition is set in Upendravajrā metre.

--- misUæotzko`Ùksu xzUFkrks fucèukfr A 
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It is clear that they had not only been masters in their fields 
but also proficient in Sanskrit Grammar and Śāstras. 

A part of this commentary is published by Pushpakumari Jain 
and a part is under preparation by Sita Sundar Ram for Indian 
National Science Academy, New Delhi.

Mahābhāskarīya of Bhāskara I of Seventh Century
It is an astromomical treatise of Bhāskara I. Though an 
astronomical treatise, it contains certain mathematical derivations 
and approximate values of trigonometric sines.

COMMENTARIES ON MAHĀBHĀSKARĪYA
There are two commentaries on the Mahābhāskarīya. The 
Mahābhāskarīya-vyākhyā-karmadīpika ̄ by Parameśvara is already 
edited and printed. The other commentary available is 
Prayogaracanā.

GOML – MT-3034; Paper MS; Devanāgarī; Complete

egkHkkLdjh;O;k[;k&ç;ksxjpuk/Mahābhāskarīya-vyākhya-Prayogaracanā 
– an anonymous work.

It begins with an invocation to Lord Śiva:

ç.ker(ij)f'koefu'ka ra ;a ln~ czãokfnu% çkgq% A
	 ;L; p foHkwfrjs"kk f{kR;knhuka çdk'kk[;k AA

fØ;rs ç;ksxjpuk xq#çlknsu Hkkldjh;L; A
	 ;S"kk çnhfidso çdk'kf;=kh p lw{eoLrwfu AA

The name of the author is neither stated at the end of the work 
nor in colophon.

Kuṭṭākāraśiromaṇi 
Kuṭṭākāra is a kind of mathematical calculation and this work 
deals with it.

There are two works in this name by different authors. One is 
the Kuṭṭākāraśiromani-vyākhyā of Devarāja with self-commentary 
which is already printed. The other is the Kuṭṭākāraśiromaṇi by 
Veṅkaṭādri.
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TMSSML – 11354; Palm Leaf MS; Grantha; Incomplete.	

dqêðkdkjf'kjksef.k% lVhdk /Kuṭṭākāraśiromaṇi-saṭīkā.

This is a commentary on Kuṭṭākāraśiromaṇih of Veṅkāṭadri of 
seventeenth century, by an unknown author.

This author of Kuṭṭākāraśiromaṇi seems to be the same as the 
Bhūgola Veṅkaṭeśa, whose first verse is similar in all his works.

It begins as:

LFkwylw{eifjdfYirkf•ya oxZHksnifjdeZladqyEk~ A
lkSjekueq• dkydkj.ka 'ks"kioZrf'k•kef.ka Hkts AA

This work of Veṅkaṭādri is dedicated to his patron king, the fourth 
Nāyaka ruler of Tanjore.

It is stated in the following śloka at the end of the work:

LofLrjLrq rs fot;jk?koHkwfeiky ----AA

,dfLeUk~ okljs ;Lrq egknkue'ks"kr% A
vdjksr~ "kksM'kfera HkwlqjsH;ks egkefr% AA

rUukexq.ksuSo dqêðkdkjf'kjkse.kkS A
miksn~?kkr% ifjPNsn% Ñrks¿;a osÄ~dVkfæ.kk AA

The Āryabhaṭīya of Āryabhaṭa I of Sixth Century
The Āryabhaṭīya is a work on astronomy and mathematics by 
Āryabhaṭa I. The mathematics portion contains thirty-three 
sūtras.

COMMENTAY ON ĀRYABHAṬĪYA

One commentary on this work the Bhaṭaprakāśa is available.

GOML – MT-3862; Palm Leaf MS; Grantha; Slightly Injured; Incomplete

HkVçdk'k&vk;ZHkVlw=kkFkZçdkf'kdk/Bhaṭaprakāśa-Āryabhaṭasūtrārthapra-
kāśikā 

This commentary on the Āryabhaṭīya is by Sūryadevayajvan, 
s/o Bālāditya. After offering salutations to Lord Viṣṇu in the first 
stanza, the author mentions his name and about the work.



|  143Manuscripts on Indian Mathematics

f=kLdU/kFkZfonk lE;d~ lw;Znso ;Touk A
vkpk;kZ;ZHkV çksÙkQlw=kkFkkZs¿=k çdk';rs AA

Lexicons
There are some interesting lexicons available in manuscript form. 
Each text is special in its own way.

GOML – MD-13601; Palm Leaf; Grantha; Complete

vÄ~dfu?k.Vq%/Aṅkanighaṇṭu – an anonymous work.
A lexicon of synonymous terms for denoting the numbers one 

to nine and zero. In this work, numbers are represented by words 
denoting objects in the natural world and religious world. This 
form of representing numbers is called bhūtasaṁkhya.

It begins as:

'k'kh lkse''k'kkÄ~d'p bUnq'pUæ'p :idEk~ A ----

And ends as:

vkdk'ka xxua 'kwU;a O;kse iq"djeEcjEk~ A
•ap ok;qina rPp JhdjkuUrHkhdjEk~ AA

GOML – MD-13603; Palm Leaf; Grantha; Complete

vÄ~dfu?k.Vq% /Aṅkanighaṇṭu – an anonymous work.
The words denoting the numbers above nine are given. 
The beginning reads like this:

,dL; Hkw:i'k'kkÄ~dukekU;wgfUr iwo± x.kukfof/Kk% A

And ends as:

}kfoa'krsjkØqfrLrq prqfo±'ktukfHk/% A
rRikouh i×k~p¯o'kR;k "kfM~oa'kRlIrfoa'kfr% A

GOML – MD-14018; Palm Leaf; Grantha; Complete

vÄ~duf?k.Vq%/Aṅkanighaṇṭu – an anonymous work.
This is similar to the above works. It deals with the pace value.
Its beginning is: 
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çFkeesdLFkkua f}rh;a n'klafKdEk~ A
r`rh;a 'krfeR;srPprqFk± rq lglzdEk~ AA

And ends as:

egke`ra =k;fL=ka'kn~HkwfjosnkfXulafKdEk~ A
i×k~pf=ka'kegkHkwfj "k¯M~=k'kk;qrHkwfj p AA

GOML – MD-13407; Paper MS; Telegu; Complete
गणितप्रकाशिका/Gaṇitaprakāśikā – an anonymous work.

It contains alphabetical list of mathematical terms with Telugu 
meaning.

It begins as: 

vÄ~dEk~] vÄ~dik'kEk~] vÄ~dqyEk~]vUrEk~] ----A

And ends as: 

{kq..kEk~] {ks=kEk~] {ksiEk~] f{kIrEk~ AA

Pañcāṅgas
There are many works on the preparation of pañcāṅgas. Of them 
the following deals with the mathematical calculations required 
for the preparation of almanacs.

TMSSML – 11655; Palm Leaf; Telegu; Slightly Injured; Incomplete
i×k~pkÄ~xxf.kre~/Pañcāṅgagaṇitam – an anonymous work. 

It deals with certain mathematical calculations required for 
the preparation of almanacs.

GOML – MD-13447; Paper MS; Devanāgarī; Complete

i×k~pkÄ~xxf.krfo"k;%/Pañcāṅgagaṇitaviṣayaḥ
It also deals with certain calculations required in the 

preparation of the Hindu calendars.

GOML – MT-1042; Palm Leaf MS; Telegu; Complete

çfrHkkx% /Pratibhāgaḥ – an anonymous treatise.
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It is a short manual containing the rules for computing various 
particulars required for the preparation of Hindu almanacs.

There are many other works, the names of which are specified 
in the book A Bibliography on Sanskrit Works on Astronomy and 
Mathematics by S.N. Sen, the details of which are not available in 
GOML. A few of them are highlighted below.

GOML – MD-16787; Palm Leaf MS; Grantha; Incomplete

xf.krxzUFk% /Gaṇ̣̣̣̣itagranthaḥ – 
It is an anonymous work on arithmetic dealing with 

commercial accounts with examples.
A copy of this MS is also kept in Adyar Library and Research 

Institute.

GOML – MT-3943; Palm Leaf MS; Grantha; Complete

xf.krlaxzg%/Gaṇitasaṁgrahaḥ
It is a commentary on the Sūryasiddhānta by an unknown 

author. The work is named as the Siddhānta-Saṁgraha in its 
colophon. 

A copy of this MS is also with in Adyar Library and Research 
Institute.

Catalogue Raisonné of Oriental Manuscripts by Taylor-1548 (now in 
GOML)

xf.kr'kkL=k% /Gaṇitaśāstraḥ of Mahārāja – It is a work on mathematics.

Catalogue Raisonné of Oriental Manuscripts by Taylor-1548 (now in 
GOML)
{ks=kxf.krlkj% /Kṣetragaṇ̣itasāraḥ – An anonymous work on geometry.

GOML – MT-3864

yhykorh O;k[;k /Līlāvatī-vyākhyā of Kāma – It is a commentary on 
the Līlāvatī.

There are some more works on mathematics available in 
manuscript form in the Adyar Library and Research Institute, the 
details of which are furnished below:
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• 75262-b – vk;ZHkVh;O;k[;k&xhfrçdk'k%/Āryabhaṭīyavyākhya – 
Gītiprakāśaḥ – Palm Leaf MS; Malayalam; Incomplete.

It is a commentary on the Āryabhaṭīya by an unknown author.
• PM1299-b – vk;kZHkVh;fo"k;kuqØef.kdk / Āryabhaṭīyaviṣayānukrama-

ṇikā – Paper MS; Telegu; Complete.
It is also a commentary on the Āryabhaṭīya by an unknown author.
• PM1300 – dkSrqdyhykorh /Kautukalīlāvatī by Rāmacandra – Paper 

MS; Devanāgarī; Complete.

• 67736 – xf.krf=kcks/%/Gaṇitatribodhaḥ – Palm Leaf MS; Grantha; 
Complete; Damaged.

It is a work by an anonymous author.
• 75263-b – xf.krfo"k;% / Gaṇitaviṣayaḥ – Palm Leaf MS; Grantha; 

Incomplete.
It is a karaṇa text by an anonymous author.
• 68537-a – xf.krlÄ~[;k / Gaṇitasaṅkhyāḥ – Palm Leaf MS; Malayalam; 

Incomplete; Damaged.
It is an anonymous work.

There are many other works on Mathematics, available as 
manuscripts all over India in various manuscript libraries. It is 
indeed a matter of pride to learn that our country has a strong 
mathematical heritage. In fact, every Indian should know about the 
rich legacy of our ancient mathematicians. Hence, it is important 
that these works which are in manuscripts form are to be taken care 
of, preserved to prevent from deterioration, catalogued properly, 
edited and studied diligently.
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Study of the Ancient Manuscript 
Mahādevī Sārīṇī

B.S. Shubha
B.S. Shylaja

P. Vinay

Abstract: The natural units of time such as day, month and 
year, that are essential for human activities are mostly guided 
by the movements of heavenly bodies. The astronomical tables 
known as sāriṇī, koṣṭaka and karaṇa are usually short collections of 
necessary data and rules for standard astronomical calculations. 
Theoretical treatises deal with a comprehensive exposition of 
astronomy frequently containing descriptions of its underlying 
geometric models. The Mahādevī Sāriṇī by author Mahādeva is 
one among these. The study shows that the computed positions 
are in fair agreement including the retrograde motion.

Introduction
Vedāṅga Jyotiṣa forms a branch of the Vedas which deals with the 
Indian astronomy. The science of astronomy developed in India 
with naked eye observations from time immemorial is fascinating. 
Many astronomers and their works have remained unknown to 
us. Some of the works have to be edited and presented to the 
scholars of next generations. The pioneering efforts are initiated by 
R. Shyamashastri from Mysore, Sudhakar Dvivedi from Varanasi, 
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T.S. Kuppana Shastri from Chennai among others. Natural units of 
time, day and year are determined by the movements of heavenly 
bodies. The astronomical tables known as sāriṇī, koṣṭaka and karaṇa 
provide these quantities. The Mahādevī Sāriṇī was one such table 
very widely used earlier.

Mahādevī
From the opening verses of the commentary on the Mahādevi 
Sāriṇī, we come to know that it was started by astronomer 
Cakreśvara. And then the incomplete work was completed by 
Mahādeva. His father’s name was Paraśurāma and Mādhava 
was his grandfather’s name. There is a work named Jātakasāra 
written in both Sanskrit and Gujarati which has recommended 
the calculation of planet’s positions from the Mahādevī Sāriṇī 
(Subbarayappa and Sarma 1985).

Mahādevī Sariṇī
The Sāriṇī was written during the epochal year 1238 S.S. 
corresponding to 1316 ce. Mahādeva has adopted four and a half 
as the palabha for calculating the ascensional difference.

The number of tables for planets itself appears to be very 
uniquely arranged. With reference to the sun, we are studying the 
position of Jupiter as provided by the Sāriṇī at fixed intervals as 
decided by the speed of movement of the planet.

The values of the movements of the planet are recorded in 
the manuscript. The true longitudes of the planets are available 
in it. Tables use layout to enhance the mathematical usage and 
highlight the phase. The initial position of the sun is set at Aries 
0°. There are 60 tables for each planet. 360/λ = 60, where λ = 0 to 
6° (Neugebauer and Pingree 1967). In this study we interpolate 
the positions of Jupiter as provided by the Sāriṇī. We have chosen 
1311 ce from the second table of the Sāriṇī, so as to match with 
the positions provided by the software (cosine kitty.com), which 
match fairly well. This applies for retrograde motion also.

The first row is numbered 1 to 27, which are the avadhis, interval 
of 14 days (26 × 14) = 364 days. The next row gives true longitude 
of the planet, followed by interpolation row. The next row gives 
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fig. 10.1: A typical table for Jupiter in the Sāriṇī
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the daily velocity followed by its interpolation. The next row has 
a value of 800 minutes. There is no clarity in the manuscript about 
its interpretation. The last row gives the planetary phases such as 
vakra, mārga, aṣṭapaścima, aṣṭapūrva, udayapaścima and udayapūrva. 
That tells about the synodic phases of the planet (Agathe Keller 
et al., online recources Id: halshs 01006137).

The longitudes are converted to right ascension with the help 
of spherical trigonometric equations (Hari 2006). The equation 
used is tan α = tan λ cos ε. Where λ = sidereal longitude, α = right 
ascension and ε = 23.5.

Discussion
Calculated values of right ascension from the Sāriṇī are compared 
with the values by the software and the results are shown in  
figs 10.2 to 10.7.

fig. 10.2: Right ascension for the year 1311 ce

fig 10.3: Right ascension for the year 1312 ce.
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fig 10.4: Right ascension for the year 1313

fig 10.5: Right ascension for the year 1314

fig 10.6:  Right ascension for the year 1315



152  | History and Development of Mathematics in India

fig 10.7: Right ascension (year 1311 ce to 1315 ce)

fig 10.8: Explanation of retrograde motion of the Jupiter. All 
the values of the Sariṇī are adjusted to the position of the earth 
indicated by the arrow corresponding to the sun and the Jupiter 
both in the first point of Aeries
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	 1.	 The values computed by the software and the Sarīṇī vary 
within a degree. For every year position of Jupiter coincides 
with the first point of Aries.

	 2.	 The annual shift towards right is explained by the annual 
motion of Jupiter.

	 3.	 Only true longitudes are utilized for the study.
	 4.	 We have not done interpolation using other rows or column 

values.
	 5.	 The onset of retrograde motion exactly coincides with 

the note vakra in the last row of the manuscript. We are 
planning to get the precise time of onset of Jupiter using the 
interpolation.

Conclusion
The study shows that the computed positions of Jupiter are in 
fair agreement including the retrograde motion. While analysing 
this manuscript (Neugebauer and Pingree 1967). Pingree had 
attributed many scribal errors however we have not seen any in 
the case of Jupiter so far. We have just begun the study of Sāriṇī. 
The meaning of other rows has to be analysed and verified. The 
table also demonstrates another aspect, perhaps all these positions 
were verified by observations. However more number of Sāriṇī and 
their theory have to be studied and verified before commenting 
about this aspect.
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Fibonacci Sequence
History and Modern Applications 

Vinod Mishra 

Abstract: The variations of mātrā-vṛttas form the sequence of 
numbers 1, 2, 3, 5, 8, 13, ..., now called Fibonacci sequence, is 
governed by the recurrence relation Fn= Fn − 1 + Fn − 2; n ≥ 2, u0 u1 
= 1. It is part of combinatorial problems in Indian mathematics. 
The limit of the ratio between two successive Fibonacci numbers 
is often termed as the golden ratio, mean or proportion, viz.
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The paper inculcates historical development of Fibonacci 
sequence and its modern applications in science, engineering 
and medicine. 

Keywords: Hemacandra–Virhaṅka sequence, Gopāla–
Hemicandra sequence, metres, Fibonacci numbers or sequence; 
golden ratio, golden section, coding; DNA/RNA, Fibonacci 
polynomials.

Introduction to Fibonacci Numbers 
Undoubtedly, well before the time of Italian Leonardo Fibonacci 
(1170–1250 ce) of Pisa, the concept of Fibonacci sequence was 
understood and applied in India in connection with metrical 
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science by the legends Piṅgala (fl. 700 bce – 100 ce), Bharata (fl. 
100 bce – 350 ce), Virahaṅka (fl. 600 – 800 ce), Gopāla (c.1135 ce) 
and Ācārya Hemacandra (1088 – 1173 ce). For detailed historical 
development of combinatorics, musical connection and Fibonacci 
like numbers, one may refer to Mishra (2002), Singh (1985), Shah 
(2010), Seshadri (2000), Kak (2004), Sen et al. (2008), etc. 

This topic aims at fulfilling the gap between history of 
mathematics, and modern science and applications. 

APPLICATIONS

Existing Fibonacci sequence and further extension of Fibonacci 
sequence to generalized Fibonacci sequence and Fibonacci 
polynomials lead to certain exciting applications in music, science, 
engineering and medicine:

Physical Science
	 • 	Mathematics (plane geometry: golden rectangle and 

isosceles triangle, regular pentagon and decagon; platonic 
solids: icosahedron, regular dodecahedron, octahedron, 
hexahedron and tetrahedron; Keplar triangle; solutions of 
integral and fractional order differential equations, integral 
equation, partial differential equation, difference equation, 
state space equation in dynamical system).

	 • 	Statistics (random process, Markov chain, set partition, 
correlation analysis).

	 • 	Physics (hydrogen bonds, chaos, superconductivity).
	 •	 Chemistry (quantum crystals, protein AB models, fatty 

acids).
	 •	 Astrophysics (pulsating stars, black holes). 

Biology and Medicine 
	 • 	Genetic coding, DNA/RNA structure, population dynamics, 

natural and artificial phyllotaxis, multicellular models, MRI 

Music
	 • 	Musical harmony.
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	 • 	Musical structures. 

Engineering
	 • 	Crypto-communication (coding, mobile network security, 

elliptic curve cryptosystem).
	 • 	Signal processing include: Face detection evaluation, fashion 

and textile design, analog-to-digital converter design, traffic 
signal timing optimization, heart and perception-based 
biometrics, audio and speech sampling, barcode generation. 

	 •	 Engineering (tribology, resisters, quantum computing, 
quantum phase transitions, photonics).

EUCLID’S THEOREM (ELEMENTS, c.300 bce) 
(Agaian and Gill III 2017; Agaian 2009). 

Divide a line AB into two segments, a larger one CB and a smaller 
one AC such that CB2 = AB × AC, where CB > AC and AB = AC + 
CB. Then AB/AC = AB/CB.

Letting x = CB/AC, x2 − x − 1 = 0. The positive root implies    
ϕ = 1.618 and is called the golden ratio or proportion. Kepler later 
discovered that the golden ratio can be expressed as ratio of two 
consecutive Fibonacci numbers.

Hemacandra–Virahaṅka Sequence 
The Jaina writer Ācārya Hemacandra (1088–1173 ce) studied the 
rhythms of Sanskrit poetry. Syllables in Sanskrit are either long or 
short. Long syllables have twice the length of short syllables. The 
question he asked is how many rhythm patterns with a given total 
length can be formed from short and long syllables? 

Ācārya Hemacandra in his Chandonuśāsana (c.1150 ce), 
mentions the idea of the number of variations (patterns) of mātrā-
vr̥ttas. His rule is translated thus:

Sum of the last and the last one but one numbers (of variations) is 
(the number of variations) of the mātrā-vr̥ttas coming afterwards.
						       – Meinke 2011 
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Number	 Fn − 1 	 Fn − 2	  Fn

0			   0	 0
1			   1 	 1 
2 		  1	 0	 1
3		  1	 1	 2
4		  2	 1	 3 
5		  3	 2	 5
6		  5	 3	 8
..		  ..	 ..	 .. 

Mount Meru

He continues: 

From amongst the numbers 1, 2, etc. those which are last and 
the last but one are added (and) the sum, kept thereafter, gives 
the number of variations of the mātrā-vr̥ttas. For example, the 
sum of 2 and 1, the last and the last but one, is 3 (which) is kept 
afterwards and is the number of variations (of metre) having 3 
mātras. The sum of 3 and 2 is 5 (which) is kept afterwards and is 
the number of variations (of the metre) having 4 mātrās. ... Thus: 
1, 2, 3, 5, 8, 13, 21, 34 and so on. 

Mount Meru is called Yang Hui’s triangle in Chinese terminology 
after Yang Hui (fl. 1238-98), Tartagalia’s triangle after Italian 
Tartagalia (1499–1557) and Pascal’s triangle in Western Europe due 
to Blaise Pascal (Traite du triangle arithmerique, 1655). 

The sequence of numbers of patterns now called the Fibonacci 
sequence, after the Italian mathematician Fibonacci, whose work 
(Liber Abaci, c.1202; Book of Calculation) was published seventy 
years after Hemacandra. The numbers in the sequence are called 
Fibonacci numbers. Fibonacci introduced and popularized Hindu–
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Arabic numeral system to Western countries (Europe) through 
Liber Abaci. 

MUSIC CONNECTION

The poetic metres Hemacandra studied have an analogue in 
music. Rhythm patterns are sequences of drum hits that overlay 
a steady pulse, or beat. Notes – groups of beats – play the role 
of syllables in poetry. Drummers hit on the first beat of a note 
and are silent on the following beats; the length of a note is the 
number of beats from one hit to the next. 

Returning to our musical question, the answer is that the number 
of rhythm patterns with length n is the sum of the number of 
patterns of length n − 1 and the patterns of length n − 2.
						            – Hall 2008

Tablā (combination of pair of drums – byan (big) 
and dayan (small)) (Tiwari and Gupta 2017)

Bola – dha (1 beat) – time duration 1 or length 1
Bola – thira kita or te te (2 beats) – time duration 2 or length 2 
Example: Different combination of 1 and 2 – to have metre (chandaḥ, 
composition) of length 4 beats (syllables):

Variations or Patterns of Length of Five Beats
LL	             2 + 2 = 4
SSL	       1 + 1 + 2 = 4
LSS	       2 + 1 + 1 = 4
SLS	       1 + 2 + 1 = 4
SSSS	 1 + 1 + 1 + 1 = 4
	         Total 5 

S – Short, L – Long
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Example: Different combinations of 1 and 2 – to have metre (chandaḥ, 
composition) of length 5 beats (syllables):

Variations or Patterns of Length of Five Beats
SLL	              1 + 2 + 2 = 5	     dha thir kita
LSL	              2 + 1 + 2 = 5	     thit kita dha thir kita 
SSSL	       1 + 1 + 1 + 2 = 5 
LLS 	              2 + 2 + 1 = 5 
SSLS 	       1 + 1 + 2 + 1 = 5 
SLSS 	       1 + 2 + 1 + 1 = 5 
LSSSS 	 2 + 1 + 1 + 1 + 1 = 5 
SSSSS 	 1 + 1 + 1 0+ 1 + 1 = 5 
	              Total 8

Metre (chandaḥ)	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9
Length, n 
Fibonacci	 1	 1 	 2	 3	 5	 8	 13	 21	 34	 55
Sequence, Fn + 1

Bharata
Short syllable (laghu) – 1 mātrā
Long syllable (guru) – 2 mātrā

No. of Beats, n		       1	       2	       3	       4	       5

		        L	       G	       LG	       GG	       LGG
			         LL	       GL	       LLG	       GLG
				          LLL	       LGL	       LLLG
					           GLL	       GGL
					           LLLL	      LLGL
							            LGLL
							            GLLL
							            LLLLL
Fibonacci Sequence	       1	       2	       3	       5	       8
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Piṅgala’s Prastara (mātrā metres) – prastara (permutations)
n-Syllabic Metres and Variations 

Meter Length, n	 1	 2	 3	 4
		 G	 GG	 GGG	 GGGG
		 L	 LG	 LGG	 LGGG
 		  GL	 GLG	 GLGG
			  LL	 LLG	 LLGG
				   GGL	 GGLG
				   LGL	 LGLG
				   GLL	 GLLG
				   LLL	 LLLG
					    GGGL
 				    LGGL
					    GLGL
					    LLGL
					    GGLL
					    LGLL
					    GLLL
					    LLLL
		 1	 4	 8	 16 

Define grouping/clubbing pattern 
		  1 – metre of four laghu or four guru 
	 	 4 – metre of three laghu and one guru or one laghu and three
			     guru
		  6 – metre of two laghu and two guru 

Matrix Form of Pascal Triangle–Blaise Pascal (1623-62)

Notes/	      													                   F 	               Līlāvatī
Syllables  													                  Piṅgala's        Metre
														                    pattern
														                    Variations
														            
0 	                                       1                                 (x + y)0          1
1	                                  1        1                            (x + y)1          2             Ukta
2	                           1          2         1                      (x + y)2          4             Atyukta
3	                      1          3        3        1                  (x + y)3          8             Madhya
4	                  1       4          6         4       1             (x + y)4         16            Pratiṣṭhā
5	             1       5        10        10       5       1         (x + y)5         32           Supratiṣṭha
6	        1       7       21        35       21       7       1    (x + y)6         64           Gāyatrī

6-Row Pascal Triangle Merupastara – Piṅgala
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Binomial coefficient 
		

n
r

n
n r r

o r n

o r n

�

�
�
�

�
� � �

� �

�

�

�
�

�
�

!
( )! !

,

,

is the coefficient of xr in the expansion of (1 + x)n.

Eventually, diagonal sums of Pascal triangle are Fibonacci 
sequence.
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Fibonacci numbers are generated thus:
F1 = 1 = 0

0
 
 
 

F2 = 1 = 1
0

 
 
 

F3 = 1 + 1 = 2 = 2
0

 
 
 

 + 
2
1

 
 
 

F4 = 1 + 2 = 3 = 
3
0

 
 
 

 + 2
1

 
 
 

F5 = 1 + 3 + 1 = 5 = 4
0
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n	
0
n 

 
 

	
1
n 

 
 

	
2
n 

 
 

	
3
n 

 
 

	
4
n 

 
 

	
5
n 

 
 

	
6
n 

 
 

	 2n

0	 1	 0	 0	 0	 0	 0	 0	 1
1	 1	 1	 0	 0	 0	 0	 0	 2
2	 1	 2	 1	 1	 0	 0	 0	 4
3	 1	 3	 3	 1	 0	 0	 0	 8
4	 1	 4	 6	 4	 1	 0	 0	 16
5	 1	 5	 10	 10	 5	 1	 0	 32
6	 1	 6	 15	 20	 15	 6	 1	 64

Matrix Form 
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FIBONACCI SEQUENCE IN GAṆITAKAUMUDĪ 

Concept of Fibonacci numbers are more advanced in the 
Gaṇitakaumudī. Chapter 13 of it defines sāmāsika-paṅkti (additive 
sequence). Fibonacci numbers are particular case of this sequence.

Rule for the formation of sāmāsika-paṅkti:

First keeping unity twice, write their sum ahead. Write ahead of 
that, the sum of numbers from the reverse order (and in) places 
equal to the greatest digit, write the sum of those (in available 
places). Numbers at places (equal to) one more than the sum of 
digits happen to be the sāmāsika-paṅkti. 	         – Kak 2004

Let v(q, r) be the rth term of sāmāsika-paṅkti when the greatest 
digit is q. The rule implies v(q, 1) = 1 and v(q, 2) = 1. Let p stands 
for the number of places.

For

v q r
v q r v q r v q v q r q
v q r v q

( , )
( , ) ( , ) ... ( , ) ( , )
( , ) (

�
� � � � � � �
� �
1 2 2 1 3
1 ,, ) ... ( , ),r v q r q q r� � � �

�
�
� 2

r = 1, 2, ..., n. n is the sum of digits.

For q = 2, we obtain Fibonacci numbers.

Example (Cow Problem, Gaṇitakaumudī): 

A cow gives birth to a calf every year. The calves become young 
and they begin giving birth to calves when they are three years 
old. Tell me Oh learned man! the number of progeny produced 
during twenty years by one cow.		           – Kak 2004

Example: Piano (saptaka-octave)

Fibonacci numbers and music are related. In music, an octave is 
an interval between two pitches, each of which is represented 
by the same musical note. The difference is that the frequency 
of the lower note is half that of the higher note. On the piano’s 
keyboard, an octave consists of five black keys and eight white 
keys, totalling 13 keys. In addition, the black keys are divided 
into a group of two and a group of three keys.	    – Meinke 2011
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Piano’s keyboard 

Algebraic & Geometrical Structure: 
Properties of Fibonacci Numbers 
(Omotehinwa and Raman 2013; Rose 2014; Stakhov 2006)
Golden ratio (Fibonacci) 

a b
b

a
b

�
�

a

a - b

a + b

b a

b

Writing x = a
b

, we get x = 1 + 1
x

, i.e. x2 − x − 1 = 0.
From which we find 
		  � � �

�
�x 1 5

2
1 61803989.

and
		  �

�
�� �

�
�

�
�

�
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1 2
1 5

5 1
2

5 1
2

1 1
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Notice that ϕ − ψ = 1, ϕψ = 1 
ϕ2 = ϕ + 1
ϕ3 = ϕ2 + ϕ = 2ϕ + 1
ϕ4 = ϕ3 + ϕ2 = 3ϕ + 2
ϕ5 = ϕ4 + ϕ3 = 5ϕ + 3

Proceeding, 
ϕn = Fnϕ + Fn − 1, n = 1, 2, ...
ψn = Fnψ + Fn − 1, n = 1, 2, ...

Subtracting we obtain, Binet’s formula 

F nn �
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i.e. 
		          Fn = Fn − 1 + Fn − 2, F0 = F1 = 1. 

		          Fn =
n k

k
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1
1, , n > 1

Let Fn = rn. The equation will reduce to r2 – r – 1 = 0. This gives ϕ, ψ.

THEOREM (Vernon 2018) 

If the ratio limit L of a Fibonacci type sequence exists, then it is a 
unique solution to the equation xn – xn – k – 1 = 0 in the interval (1, ∞).

PYRAMID 

Let y be half the base of square, h the height and s slant height of 
pyramid. 

x2 = h2 + y2
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Golden spiral, or golden rectangle  
(Overmars and Venkatraman 2018; Rose 2014)

Right-angled triangle representation of the golden ratio ϕ 
(Overmars and Venkatraman 2018) 

x2 − y2 = h2 + xy
x
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1 0

ϕ2 – ϕ – 1 = 0

AREA OF SQUARE AND RECTANGLE

Area of square = area of rectangle 
(x + y2 = x(2x + y))
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FIXED POINT ITERATION 
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NEWTON-RAPHSON METHOD (ORDER OF CONVERGENCE 2) 
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OBSERVATIONS 

	 1.	 Any two consecutive Fibonacci numbers are relatively 
prime.

	 2.	 For every two odd numbers, the next is an even number.
	 3. 	Sum of any ten consecutive Fibonacci numbers are always 

divisible by 11.
	 4.	 Fibonacci numbers in composite-number positions are 

always composite numbers, with the exception of the fourth 
Fibonacci number.

	 5.	 If n and m are positive integers, then gcd(Fn, Fm) = Fgcd(n, m)

	 6.	 Fn is divisible by Fm iff n is divisible by m.
	 7. 	Extended Fibonacci Numbers 
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N	 Fn	 Prime Factor

 1	 1
 2	 1
 3	 2
 4	 3 
 5	 5 
 6	 8	 23

 7	 13
 8	 21	 3 × 7
 9	 34	 2 × 7
10	 55	 5 × 11
11	 89
12	 144	 24 × 32

13	 233
14	 377	 13 × 29
15	 610	 2 × 5 × 61
16	 987	 3 × 7 × 47
17	 1597
18	 2584	 23 × 17 × 19
19	 4181	 37 × 113
20	 6765	 3 × 5 × 11 × 41
21	 10946	 2 × 13 × 421
22	 17711	 89 × 199
23	 28657 
24	 46386	 25 × 32 × 7 × 13
25	 7502	 52 × 3001
50	 12,586,269,025

Properties of Fibonacci Numbers

	
F F
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N	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11

Fn	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55
F− n	 0	 1	 − 1	 2	 − 3	 5	 − 8	 13	 − 21	 34	 − 55

EXAMPLE: BEES AND RABBIT PROBLEMS 
(Omotehinwa and Ramon 2013; Rose 2014; Scott and Marketes 2014)

Rabbit Problem
Growth pattern of the Fibonacci rabbit was first idealized by 
Fibonacci in his book Liber Abaci (1202). 
Statement of Problem (Liu 2018)
The idea follows as: 

Rabbits never die; it takes one month for a pair of infant rabbits 
to become a pair of adults; an adult pair always gives birth to an 
infant pair; the system starts with one pair of adult rabbits. This 
gives rise to (Fibonacci sequence), where Ft is the number of adult 
pairs at month t, and the number of infant pairs at month t is 
Ft − 1. So, the ratio of the number of adult pairs over the number 
of infant pairs goes to f.

A man put a pair of rabbits (a male and a female) in a garden that 
was enclosed. How many pairs of rabbits can be produced from 
the original pair within twelve months, if it is assumed that every 
month each pair of rabbits produce another pair (a male and a 
female) in which they become productive in the second month and 
no death, no escape of the rabbits and all female rabbits must be 
reproduced during this period (year)? (Meinke 2011) (translation 
from Liber Abaci of Fibonacci). 

The solution to this problem is Fibonacci numbers (sequence). 
Explanation: Let us assume that a pair of rabbits (a male and a 
female) was born in January first. It will take a month before they 
can produce another pair of rabbits (a male and a female) which 
means no other pair except one in the first of February. Then, 
on first of March we have 2 pairs of rabbits. This will continue 
by having 3 pairs on the first April, 5 pairs on the first of May, 8 
pairs on the June first and so on. The table below shows the total 
number of pairs in a year. 
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	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12 
Month 	   Jan.	   Feb.	   Mar.	   Apr.	   May	   June  	 July   	Aug.	  Sept.	 Oct.  	Nov.	  Dec.
Baby	 1	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55
(Young)
Mature	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55	 89
(Adult) 
Total	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55	 89	 144

Total Number of Rabbit Pairs in a Year

Bees Problem 

We note that although the rabbit reproduction problem is not 
realistic, Fibonacci numbers fit perfectly to the reproduction 
ancestry of bees. Within a colony of bees, only the queen 
produces eggs. If these eggs are fertilized then female worker 
bees are produced. Male bees, which are called drones, are 
produced from unfertilized eggs. Female bees therefore have 
two parents; drones in contrast, have just one parent. 
					     – Scott and Marketos 2014 

Further observations:
	 1. 	The male drone has one parent, a female. 
	 2.	 He also has two grand-parents, since his mother had two 

parents, a male and a female.
	 3. 	He has three great-grandparents: his grandmother had two 

parents but his grandfather had only one and so forth. 
Looking at the family tree of a male drone bee we note the 

following: 

Comment 
We observe that the ancestry of a worker or even a queen is 
simply a shifted Fibonacci sequence because of its connection 
to the ancestry of the bee drone. It is important to note that the 
number of ancestors at each generation n for (mammalian) sexual 
reproduction is simply 2n. The ratio of two consecutive generations 
is asymptotically equal to 2 (Pāṇini sequence) whereas in the case 
of bees, it is asymptotically equal to the golden number 1.618. 

Generation	 Drone	 Worker/Queen
1		  1	 2
2		  2	 3
3		  3	 5
4		  5	 8 
5		  8	 13 
6		  13	 21
7		  21	 34 
8		  34	 55
9		  55	 89
12		  55	 144 

Bee Family Tree 
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Thus the ancestry trees for bees and rabbits do not have the 
same mathematical complexity. 

Fibonacci Code (Stakhov 2006) 
Zeckendorf’s system of writing numeral (Edou and Zerckendorf 
1901-83) 

N = anFn + an − 1Fn − 1 + ... + a1F1, ai ∈ {0, 1}
We write N = an an − 1 ... a1F1

     N = Fi + r, 0 ≤ r < Fi − 1i = 2, 3, ... F1 = F2 = 1
       Fi ≤ N < Fi + 1

i.e. 0 ≤ N – Fi < Fi + 1 – Fi

i.e. 0 ≤ r < Fi − 1

N	 F5 = 8	 F4 = 5	 F3 = 3	 F2 = 2	 F1 = 1	           Fibo		
						      Representation
0	 0	 0	 0	 0	 0	 0
1	 0	 0	 0	 0	 1	 1
2	 0	 0	 0	 1	 0	 10
3	 0	 0	 1	 0	 0	 10
4 = 3 + 1	 0 	 0	 1	 0	 1	 101
5	 0 	 1	 0	 0	 0	 100
6 = 5 + 1	 0	 1	 0	 0	 1	 1,001
7 = 5 + 2	 0	 1	 0	 1	 0	 1,010
8	 1	 0	 0	 0	 0	 10,000

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12 
Month 	   Jan.	   Feb.	   Mar.	   Apr.	   May	   June  	 July   	Aug.	  Sept.	 Oct.  	Nov.	  Dec.
Baby	 1	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55
(Young)
Mature	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55	 89
(Adult) 
Total	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55	 89	 144

Total Number of Rabbit Pairs in a Year

Bees Problem 

We note that although the rabbit reproduction problem is not 
realistic, Fibonacci numbers fit perfectly to the reproduction 
ancestry of bees. Within a colony of bees, only the queen 
produces eggs. If these eggs are fertilized then female worker 
bees are produced. Male bees, which are called drones, are 
produced from unfertilized eggs. Female bees therefore have 
two parents; drones in contrast, have just one parent. 
					     – Scott and Marketos 2014 

Further observations:
	 1. 	The male drone has one parent, a female. 
	 2.	 He also has two grand-parents, since his mother had two 

parents, a male and a female.
	 3. 	He has three great-grandparents: his grandmother had two 

parents but his grandfather had only one and so forth. 
Looking at the family tree of a male drone bee we note the 

following: 

Comment 
We observe that the ancestry of a worker or even a queen is 
simply a shifted Fibonacci sequence because of its connection 
to the ancestry of the bee drone. It is important to note that the 
number of ancestors at each generation n for (mammalian) sexual 
reproduction is simply 2n. The ratio of two consecutive generations 
is asymptotically equal to 2 (Pāṇini sequence) whereas in the case 
of bees, it is asymptotically equal to the golden number 1.618. 

Generation	 Drone	 Worker/Queen
1		  1	 2
2		  2	 3
3		  3	 5
4		  5	 8 
5		  8	 13 
6		  13	 21
7		  21	 34 
8		  34	 55
9		  55	 89
12		  55	 144 

Bee Family Tree 
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Fibonacci coding 11 = 8+ 2 + 1 = 1 × 8 + 0 × 5 + 0 × 3 + 1 × 2 + 1 
× 1 = 10,011
Binary coding 11 = 23 + 21 + 20 =1,011

Fibonacci code = Fibonacci encoded value + ‘1’.

Procedure 
	 1.	  Find Mi = max Fi ≤ N. Note down the remainder
	 2. 	Put 1 in the ith position of Mi.
	 3. 	Repeat the step 1. Repeat the process until we reach a 

remainder of zero. 

	 4. 	Place 1 after the last naturally occurring one in the output.
	 5. 	We may put 1 in the Fibonacci code as 01, 11, 101, 1001, etc. 

Level
0	 1	 1	 2	 3	 5	 8	 13	 21	 34
1	 3	 4	 7	 11	 18	 29	 47	 76	 123
2	 4	 6	 10	 16	 26	 42	 64	 110	 178
3	 6	 9	 15	 24	 39	 63	 102	 165	 267
4	 8	 12	 20	 32	 52	 84	 136	 220	 356 

Range of Fibonacci number 0, 1, 1, 2, 3, 5, 8, 13, ... with n = 5 is from 
F0 = 0 to F6 = F5 = F4 = 8 + 5 = 13 is 13.

Modular Form
Let F0 = Ft mod p, F1 = Ft+1 mod p, Ft is the tth Fibonacci number. Fn 

mod p form a periodic sequence, i.e. the sequence keeps repeating 
its values periodically.

Fp		 Period, lp

  7		  16	 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 1, 2, 6, 1
11		  10	 0, 1, 1, 2, 3, 5, 8, 2, 10, 1
13		  28	 0, 1, 1, 2, 3, 5, 8, 0, 8, 8, ..., 2, 12, 1
17		  36	 0, 1, 1, 2, 3, 5, 8, 0, 8, 13, 4, 0, 4,...,..., 2, 16, 1

Fn in Modular Form
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Generalized Fibonacci Sequence 

FIBONACCI SEQUENCE GENERATING FUNCTION 
(AUSTIN ROCHFORD) 
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TRIBONACCI NUMBERS 

Fn + 1 = Fn + Fn − 1 + Fn − 2, F0 = 0, F1 = 0, F2 = 1.

GENERALIZATION OF MOUNT MERU (KAK 2004) 

Fn + 1 = Fn + Fn − 1 + Fn − 2, F0 = F1 = 0, F2 = 1

Metre		  0	 1	 2	 3	 4	 5	 6	 7	 8	 9
(chandaḥ)
Length, n
Fibonacci	 0	 0	 1	 1	 2	 4	 7	 13	 24	 44
Sequence, Fn

Triplicate Meru

1						      1
2					     1	 1	 1
3				    1	 2	 3	 2	 1 
4			   1	 3	 6	 7	 6	 3	 1

5		  1	 4
	 1	 1	 1	 1	 1

	 4	 1				    0	 6	 9	 6	 0

6	 1	 5	 1	 3	 4	 5	 4	 3	 1	 5	 1			   5	 0	 5	 1	 5	 0	 5

STATISTICAL APPLICATION OF GENERALIZED 
FIBONACCI SEQUENCE (Cooper 1984)

A fair coin is tossed repeatedly until n consecutive heads are 
obtained. What is the expected number of tosses en to conclude 
the experiment?

GENERALIZATION OF GOLDEN SECTION (GOLDEN P-SECTION) 
(Agaian and Gill III 2017; Agaian 2009)
CB
AC

AB
CB

p

�
�
�
�

�
�
� , p is a positive integer. CB > AC, AB = AC +CB. 

This implies xp +1 − xp − 1 = 0, x = AB/CB. Positive root is called 
golden p-ratio.
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Further, x
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p	 Fibonacci Numbers
0	 0	 1	 2	 4	 6	 8	 16	 32	 64 
1	 0	 1	 1	 2	 3	 5	 8	 13
2	 0	 1	 1	 1	 2	 3	 4	 6	 9 
3	 0	 1	 1	 1	 1	 2	 3	 4  
4	 0	 1	 1	 1	 1	 1	 2	 3	 4 

Application: Generalized golden ratio is generally applied for 
forecasting financial time series analysis (simulation). This 
includes correlation analysis, moving averaging models, logistic 
regression, artificial neural networks, support vector machines 
and decision tree analysis (Agaian and Gill III 2017; Agaian 2009). 

Fibonacci Polynomials 
Fibonacci polynomials are obtained from generalized or weighted 
Fibonacci sequence as follows (Araghi and Noeiaghdam 2017; 
Bashi and Yelcinbas 2016; Kurt and Sezer 2013; Mirzaee and 
Hoseini 2013):

Let k be an integer. Then k-Fibonacci sequence is defined by 
Fn + 1 = kFn + Fn + 1, F1 = F0 = 1

For 
k = 1, Fn + 1 = Fn + Fn + 1 (Fibonacci sequence)  

If k = x is a real variable, then 
Fn + 1(x) = xFn (x) + Fn − 1(x), F0(x) = F0 = 0, F1(x) = F1 = 1
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[n/2] stands for greatest integer not exceeding n/2. This is equal 
to (n − 1)/2 if n is even and n/2 if n is odd. 

F1(x) = 1
F2(x) = x
F3(x) = x2 + 1
F4(x) = x3 + 2x
F5(x) = x4 + 3x2 + 1

F x
n i

i
x nn

n i

i

n
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The polynomials so obtained are used in solving differential, 
integral and difference equations wherein solutions are expressed 
in matrix equivalent of linear combinations of Fibonacci sequence. 

y x a F x F x Ar r
r

N

( ) ( ) ( )� �
�
�

1

where 
		                F = [F1(x), ..., FN(x)], A = [a1, ..., aN]T.

For further procedural details refer to of pro Equations (Koc 
et al. 2014; Mirzaee and Hoseini 2013).

Fibonacci Sequence in Biology and Medicine 

ENERGY SOURCES

	 • 	Carbohydrates (starch, cellulose, glucose)
	 • 	Proteins (daal-cereals, meat, eggs)
	 • 	Lipid (ghee/oil, fatty acids)
	 •	  Nucleic acid (DNA, RNA) 
DNA/RNA are combinations of sugar, phosphates and nucleic 
(nitrogenous) bases called nucleotides. Nucleic bases are divided 
into purine (adenine-A, guanine-G) and pyrimidine (thymine-T, 
cytosine-C, uracil-U). 

Basic element of DNA are the sequence (polymer) of four 
nitrogenous bases: A, G and C, T while RNA is made up of A, G 
and C, U. 
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In human field, Dress et al. proposed that the growth pattern 
of repetitive DNAs is analogous to the pattern described by the 
Fibonacci process (repetitive DNAs are those built from a basic 
short DNA sequence that is repeated many times, often referred 
to as “junk DNA” and accounted for a large fraction of the whole 
human genome).			     – Liu and Sumtler 2018

MATRIX REPRESENTATION OF DNA MOLECULES 
(Hu and Pitoulchov 2017; Koblyakov et al. 2011)

The pairs of complementary molecules A – T and C – G of DNA 
are respectively linked by 2 and 3 hydrogen bonds.

RELATION BETWEEN GENETIC MATRIX AND GOLDEN SECTION

Genetic matrix ([3, 2; 2, 3]n) = [ϕ, ϕ− 1, ϕ− 1, ϕ]n
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0 1
0 C A
1 T G

00 01 10 11
00 CC CA AC AA
01 CT CG AT AG
10 TC TA GC GA
11 TT TG GT GG

[CA; TG](1) contains two numbers 3, 2; ratio 3/2. 
[CA; TG](2) contains three numbers 9, 6, 4; quint ratio each 3/2. 
[CA; TG](3) contains four numbers 27, 18, 12, 8; quint ratio each 3/2.

The concept of Fibonacci sequence is used to study potential 
number of fatty acids and maturation problem of cell division 
process.
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Karaṇī (Surds)

R. Padmapriya

cgqfHkfoZçykiS% ¯d =kSyksD;s lpjkpjsA
;fRdf×k~p}LR‌k~ rRlo± xf.krsu fouk u fgAA

Whatever there is in all the three worlds which are possessed 
of moving and non-moving being all that indeed cannot exist 
without gaṇita. 		               – Gaṇitasāra-saṁgraha I.16

Gaṇitaśāstra has always occupied a position of high ranking 
among the various Śāstras. This is seen right from the Vedic period. 
The importance of learning gaṇita for learning Vedas as well as for 
performing sacrifices and rituals is clearly evident from the texts 
of the Vedic period.

Among the Vedāṅgas, Kalpa occupies a special place. 
Kalpa provides all necessary details under different heads, viz. 
Śrautasūtras, Gr̥hyasūtras, Dharmasūtras and Śulbasūtras. Among 
these, Śulbasūtras deals with the rules and measurements for 
constructing the fire alter. Śulbasūtras can possibly be treated as 
the earliest mathematical texts in India.

The vedīs were constructed in different shapes, such as 
rathacakraciti (circle), śyenaciti (a bird-shape), ubhayata prauga 
(rhombus shape) and kūrmaciti (tortoise shape). For these 
constructions, they needed the knowledge of geometry.

The Śulbasūtras like Baudhāyana, Āpastamba, Mānava and 
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Kātyāyana have given the rules for constructing altars. One can 
learn most of the geometrical rules from the Śulbasūtras. They 
also give rules for arrangement as well as measurements of 
the bricks. Baudhāyana was the first to give all the geometrical 
rules. He gave the rules for finding approximate value of and the 
theorem of square (popularly known as Pythagorean Theorem).  
Though the development of Gaṇitaśāstra is found in Vedic period 
from fifth century ce onwards the other mathematicians such as 
Brahmagupta, Varāhamihira, Mahāvīra, Śrīdhara, Śrīpati and 
Bhāskara II enriched Gaṇitaśāstra.

The Word Karaṇī in Vedic Period
In the Śulbasūtras, the ancient work on geometry, the sulbakāras 
used the word akṣāṇayārajju to designate the diagonal of a square 
or rectangle, whereas the length and breadth were the tiryaṅmāṇi 
and pārśvamāṇi:

nh?kZprqjlzL;k{.k;kjTtq% ikEZekuh fr;ZÄ~ekuh p ;Ri`FkXHkwrs OkqQ#rLrnqHk;a 
djksfrAA		     	   – Baudhāyana Śūlbasūtra I.48

But the word akṣṇayārajju disappeared after a while and the word 
karṇa was substituted for the word “diagonal”.

Since the śulbakāras used the rope to cut a figure along its 
diagonal, the word karṇa is used as a modifier of the word rajju, 
which means a rope. Since the word rajju is a feminine noun, the 
adjective karṇa (making) takes the feminine form as karaṇī. The 
word karaṇī occurs very frequently in the Śulbasūtras. Baudhāyana 
treats the word karaṇī as side of the square formed on the diagonal 
produced by rajju. Āpastamba also uses the word dvikaraṇī in the 
sense of a measurement by a rope. Kātyāyana treats the word 
karaṇī as to mean a rope.

dj.kh rRdj.kh fr;ZÄ~ekuh ikEZekU;{.k;k psfr jTto%A
		               – Kātyāyanā Śulbasūtra II.3

The terms karaṇī, tatkaraṇī, tiryaṇmānī, pārśvamānī and akṣṇayā 
denote chords (measuring the side of a square or rectangle).

Āryabhaṭa I uses the word varga kr̥ti for square power and mūla 
for square root. He never uses the word karaṇī in either sense. In 
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his work Āryabhaṭīya, he gives the rules for the construction of 
circle, triangle and quadrilateral, where the word karṇa is used 
to denote hypotenuse of triangle and diagonal of quadrilateral.

o`Ùka Hkzes.k lkè;a f=kHkqta p prqHkZqta p d.kkZH;kE‌k~A
lkè;k tysu leHkwj/ Åèo± yEcdsuSoAA

			        – Āryabhaṭīya II.13
A circle should be constructed by means of a pair of compasses 
while a triangle and a quadrilateral are constructed by means of 
two hypotenuse.

He also gives the theorem of square of hypotenuses:

;'pSo HkqtkoxZ% dksVhoxZ Ü Ó d.kZoxZ% l%A
		         – Āryabhaṭīya II.17

(bhujā)2 + (koṭī)2 = (karṇa)2.

Here, the term bhujā means base of a rectangle or square, koṭī 
means altitude and karṇa means hypotenuse and diagonal. This 
is represented in the following figure:

 

Later on, the theorem was called bhujā – koṭi – karṇa – nyāya.
This can be compared with the Pythagorean Theorem of 500 

ce as follows: 

In a right-angled triangle, where c is the hypotenuse and a and 
b are the other two sides, it can be stated that: a2 + b2 = c2.

The karaṇī is so called because it makes (karoti) the equation of 
hypotenuse – c and sides a and b, i.e. a2 + b2 = c2. Here, the word 
karaṇī is taken from the root kr̥ (kar) to do.
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The Amarakośa, the ancient Sanskrit text on lexicography, gives 
the synonyms of karaṇī as śrotram, śrutiḥ, śravaṇam and śravaḥ.

In his Nirukta, Yāska derives the word karṇa, from the root 
kr̥t, to cut. The word karṇa will take the meaning “a line dividing 
a figure”. Since the line diagonal cuts the figure of rectangle or 
square, a diagonal can also be designated as karṇa. The Greek root, 
krino which means “to separate”, “put asunder”, is similar to karṇa 
and so supports the etymological derivation of Yāska.

From the above statement, we are able to understand that the 
word karaṇī was in usage from Vedic period, even before the period 
of Bhāskara I and was used to denote the diagonal and hypotenuse, 
and that its usage is more in works of geometry.

Varga, karaṇī, kr̥tir, vargaṇa, yavakaraṇam are synonyms of karaṇī. 
When a number takes the quality of being karaṇī, Bhāskara I calls 
it karaṇītvam. He employs it in this sense while explaining the 
volume of a pyramid in the Āryabhaṭīya Bhāṣya:

v/ZfeR;=k djf.kRokn~‌ };ks% dj.khfHkprqfHkHkkZxks fß;rsA

Here, when half takes the quality of karaṇī, it is mentioned as 
karaṇītva, whereas the term karaṇī refers to the surds.

Another line in the Āryabhaṭīya Bhāṣya, while explaining the 
volume of a sphere, clearly shows:

rRiqu% {ks=kiya ewyfØ;ek.ka djf.kRoa çfri|r] ;LekRdj.khuka ewy 
(eisf{krE‌k~)A

Karaṇī is a number whose square root is to be taken. But the area, when 
its square root is being taken, obtains the state of being karaṇī because 
the square root is required of karaṇī.1

Śrīpati, in his astronomical treatise, the Siddhāntaśekhara 
defines the term thus:

xzkáa u ewya •yq ;L; jk'ksLrL; çfr"Va dj.khfr ukeA
				                 – XIV.7ab
The name karaṇī has been given to a number whose square root 

	 1	 ABB II.7, Eng. tr. Hayashi, p. 61.
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should be obtained, but speaking exactly does not exist as an 
integer.

Brahmagupta and Bhāskara II also use the term in the same 
sense, although they do not give its definition.2

Mahāvīra, in his Gaṇitasāra-saṁgraha uses the word karaṇī with 
a short vowel (karaṇī) when he gives the rule for the addition and 
subtraction of the surd.3

Bhāskara II in his Līlāvatī uses the word karṇa to denote 
hypotenuse and in Bījagaṇita he mentions surd numbers as karaṇī.

Surds in Modern Mathematics
In modern mathematics, surd is defined thus: “Surds are irrational 
numbers. They are non-terminating, non-repeating decimals.”

Surd is a number which cannot be perfectly evaluated but 
which can be measured accurately. These numbers can be located 
on the number line. Representation of √2 and √3 is as follows:

Our śulbakāras also express the same rule. Dvikaraṇī √2, trikaraṇī 
√3 cannot be calculated accurately. They give a method to find 
the approximate value of √2. But they measured the exact value 

	 2	 BrSpSi XVIII.38-40, explained in chapter 3.
	 3	 GSS, kṣetra 88-89 explained in chapter 2.
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of √2 , √3 by measurement. This achievement in this field without 
any modern sophisticated tools is remarkable. Also in modern 
mathematics surds are generally known to be xn  (where x cannot 
be written in the form yn (where y is a whole number). But the 
word karaṇī in Gaṇitaśāstra mostly denoted the diagonal of a 
rectangle or square or a hypotenuse of a right angle triangle. Since 
the diagonal can only be a square root and not cube root, fourth 
root, or fifth root, the term karaṇī mostly denotes the square root 
of a non-perfect square number, which is called a surd. From the 
above study it can be conclude that the term karaṇī appears to 
match with our modern mathematical term “surd”.

Karaṇī in Kṣetragaṇitam
When Bhāskara I gives an introduction to gaṇitapāda in his 
Āryabhaṭīya Bhāṣya, he starts thus:

xf.kra f}çdkje~ & jkf'k xf.krE‌k {ks=k xf.krE‌k~A vuqikrdqV~‌Vkdkjkn;ks xf.kr&

fo'ks"kk% jkf'kxf.krs&vfHkfgrk%] Js<hPNk;kn;% {ks=kxf.krsA rnsoa jk';kfJra 

{ks=kkfJra ok v'ks"ka xf.kre~ ;nsrr‌~ dj.kh&ifjdeZ rr~ {ks=kxf.kr ,oA 

;|I;U;=k dj.khifjdeZ] rFkkfi rL; u d.kZHkqtkdksfV çfrikndRo&fefr 

u nks"k%A

Thus we understand that our ancient mathematicians classified 
gaṇita under two heads: Rāśi-gaṇita (symbolical mathematics) 
and kṣetra-gaṇita (geometrical mathematics). Topics like algebra 
fall under rāśi-gaṇita, while others like series problems on 
shadow fall under the kṣetra-gaṇita. The operations of surds 
(karaṇī-parikarma), though it formed part of algebra (kuṭṭaka), 
was essentially a part of geometry (kṣetra-gaṇita), for its main 
function was to establish relations between the hypotenuse, the 
base and the upright. The operations of karaṇī are also present 
in other chapters like arithmetic and algebra where the relation 
between hypotenuse and base is not mentioned. Early studies on 
karaṇī are found in geometrical works like the Śulbasūtras. This 
is because they deal with measurements of areas and lengths 
of lines and sides.
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Method of constructing a square leads to the origin of karaṇī (surd 
number) in Śulbasūtras.

The Origin of Dvikaraṇī, Trikaraṇī, Tr̥tīyakaraṇī 
Baudhāyana explains karaṇī thus:

lepqrjlzL;k{.k;kjTtqf}ZLrkorha Hkwfea djksfrAA

A square constructed on the diagonal of a square produces double 
the area of square. 

In a square ABCD 
AC = 2BC2

AC2 = 2AB2 (AB = BC) 
AC = √2AB. = √2a where AC is dvikaraṇī 

of the measure AB. 
Then Baudhāyana gives rule for trikaraṇī:

çek.ka fr;ZX‌k~ f}dj.;k;keL;k{.k;kjTtqfL=kdj.khAA

Then again the measure of the diagonal of a rectangle, having 
sides a and √2a is √3a,  for  a2 + (√2a)2 = 3a2 = (√3a)2 √3a is known 
as trikaraṇī.

The knowledge of dvikaraṇī and trikaraṇī discussed by 
śulbakāras led in a way to the theorem of square on a diagonal.

In modern mathematics we call it as Pythagorean Theorem.
It seems that it was known in India before Pythagorus gave it 
to the world. In Śulbasūtras the actual theorem is in regard to a 
rectangle and not triangle. They considered right angle triangle as 
a part of rectangle and square. The Śulbasūtras explicitly did not 
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give any name for the theorem of square. But our ancient Indian 
mathematicians called it as bhujā – koṭi – karṇa – nyāya.

The Origin of Bhujā–Koṭi–Karṇa–Nyāya
Baudhāyana explains the theorem of square thus:

nh?kZprqjlzL;k{.k;kjTtq% ikEZekuh fr;ZÄ~ekuh p ;Ri`FkXHkwrs OkqQ#rLrnqHk;a 
djksfrAA

The square b is constructed on the length (tiryaṅmānī) of the 
rectangle (dīrghacaturasram) while square a is constructed on the 
breadth (pārśvamānī) of the rectangle and square c is constructed 
on the diagonal (akṣṇayārajju) of the rectangle area of square a + 
area of square b = area of square c

a2 + b2 = c2.
A proof of bhujā–koṭi–karṇa–nyāya is given by Bhāskara II in his 
Bījagaṇitam4 in the form of an example. In this example, he suggests 
the method to find the hypotenuse of a right angle triangle whose 
other sides are given:

{ks=ks frfFk u•S% rqY;s nks% dksVh r=k dk Jqfr%A
miifÙk ;% :<L; xf.krL;kL; dF;rkE‌k~AA

Here, the words nakhaiḥ and tithi denote the number 20 and 15 
respectively. Śrutiḥ denotes karṇa (hypotenuse).

	 4	 Commentary on the Bījagaṇitam by Sudhakaradvivedi.
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Say what is the hypotenuse in a plane figure in which 
the side and upright are equal to fifteen and twenty? 
And show the demonstration of the received mode of 
computation.

The answer is 25.

Here, the answer is found by the construction of four right-angle 
triangles. The four right-angle triangles are arranged in such a 
way that their hypotenuses form a square. In the process, another 
interior square is formed. The difference between the upright and 
the base is the length of its side. From this, we can know that area of 
the square is equal to the area of four right-angle triangles with the 
area of the interior quadrilateral. Knowing the area of the square 
we can easily find the side of square which is the hypotenuse of 
the right-angle tringle.

The Value of √2 Given by Śulbakāras

The value is: 

		  1
3

1
3 4

1
3 4 34

577
408

1 414215� � � �
. . .

. .

In modern mathematics, the value of √2 = 1.4142135. The śulbakāras 
attained a remarkable degree of accuracy in calculating an 
approximate value of √2 which is similar to the modern value.

The rule given by Baudhāyana is:

çek.ka r`rh;su o/Z;sÙkPp prqFkZsukRerqfL=ka'kksusuAA lfo'ks"kAA
		              – Baudhāyana Śulbasūtra I.62
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The measure is to be increased by its third and this again by its 
own fourth less the thirty-fourth part of that fourth. This is the 
value of the diagonal of a square.

Baudhāyana says that this value is approximate only. This is 
understood by the term viśeṣa. Thus, the śulbakāras recognized the 
irrationality of √2.

Constructional geometry in Śulbasūtras is the origin of 
arithmetical and algebraic operations on surds. Among all the 
ancient Indian mathematicians, Bhāskara II was one of the very 
few authors who dealt elaborately with karaṇī. In his algebraical 
work Bījagaṇitam he deals with the operations on karaṇī.

Bhāskara II explains the process of addition, subtraction, 
multiplication, division, squaring and square root of surds.

The term avyakta means unmanifested thing. The six operations 
of surds are dealt elaborately in avyakta-gaṇita. In the above 
operations, the answers are only approximate, i.e. not manifested 
clearly. Surds are the numbers which do not have perfect square 
root values. Bhāskara’s commentator Kr̥ṣṇadaivajña in his 
Bījapallavam mentions thus:

laKk rq dj.khjk'kkosrL; xf.krL;ko';dRokn~‌æ"VO;kA r=k ;L; 
jk'kseZwys¿isf{krs fujxza ewya u laHkofr l dj.khA u Roeynjkf'kek=kE‌k~A

				    – Karaṇī Ṣaḍvidham chapter

Conclusion
The various definitions of karaṇī given by the ancient Indian 
mathematicians evolved so that they could gradually differentiate 
between the varga or pada (which refers to the square root of perfect 
squares) and karaṇī (which refers to the square root of the usage 
of the karaṇī such as √2, √3 and 1/√3 seem to have made it easy 
for the śulbakāra’s calculations. This is seen from the fact that they 
converted all big surds (which arose as a result of calculations) 
into these three karaṇī non-perfect squares).

The present study of surds plays a very important role in the 
astronomical field. This is because surds feature in a number of 
astronomical research studies like calculations of position of the 
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sun, the planets and other heavenly bodies, the phenomenon of 
eclipse and many other areas of astronomy.
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Square Roots of Expressions in Quadratic 
Surds as per Bhāskarācārya 
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Abstract: Bhāskarācārya in his Bījagaṇita talks about square roots 
of expressions in quadratic surds where more than one karaṇī 
(surd, i.e. a square root of a positive integer which is not a perfect 
square) may be present. Bhāskarācārya gives a method of finding 
a square root when the expression is a sum of an integer and 
one surd. This method depends only on finding the square of 
an integer and a square root of a perfect square. Algorithms for 
squaring and root finding have already been discussed by Indian 
mathematicians from the times of Āryabhaṭa. Interestingly, 
the trial method based on factorization has not been discussed 
by Bhāskarācārya. In modern times, it is well understood that 
factorization of large numbers is a difficult problem. Hence, the 
method of Bhāskarācārya has an edge over other methods which 
require factorization. Bhāskarācārya extends this method by 
way of a hint in one verse. He says, to find square root of a surd 
expression with 3 surds, you should collect 2 surds, for 6 surds, 
collect 3 surds, for 10 surds collect 4 surds and for 15 surds collect 
5 surds. After this, one should follow a method in analogy with 
3-surd case. Although this is the right starting point, there are 
sometimes difficulties in proceeding with the problem especially 
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when there are 3 or more surds in the expression. The aim of 
this paper is to analyse especially the 3-surd case. 

Keywords: Bhāskarācārya, quadratic surds, squares, square 
roots. 

Introduction 
In “Karaṇīṣaḍvidha” part of his book Bījagaṇita (Abhyankar 
1980), Bhāskarācārya tells us about six basic operations about 
quadratic surds, viz. addition, subtraction, multiplication, division, 
squaring and finding square root. For example, rationalizing the 
denominator of a quadratic surd is explained. Here we concentrate 
on the method of Bhāskarācārya about how to find a square root 
of an expression in quadratic surds. In high school we learn trial 
method of extracting square root. For example, to find square root 
of 29 + 2√210 we find 2 factors of 210 whose sum is 29. Here 210 
= 15 × 14 and 29 = 15 + 14. Thus, √15 + √14 is a square root. For 
large numbers, factorization can be difficult, and also we may have 
to try many possibilities. On the contrary, Bhāskarācārya gives a 
root-finding algorithm based on the methods that he has already 
introduced, e.g. finding square root of an integer. 

oxZs dj.;k ;fn ok dj.k;ks% rqY;kfu :ifk.k vFkok cgwuke~ A 
fo'kks/;sr~ :iÑrs% insu 'ks"kL; :ifk.k ;qrksfurkfu AA 

i`Fkd~ rn~ v/sZ dj.kh};a L;kr~ ewys vFk cÞoh dj.kh r;ks% ;k A 
:ifk.k rkfu ,oe~ vr% vfi Hkw;% 'ks"kk% dj.;ks ;fn lfUr oxZs AA 

To find the square root of a quadratic surd expression which 
has one or more surds (with positive sign), from the square of 
the integer term subtract one or two or more integers under the 
radical sign. The integer that you get should be a perfect square. 
Take its square root. Add it to and subtract it from the integer term 
in the expression. Divide these two results by 2. Take the sum of 
the square roots of the resulting two numbers. If no surds are 
remaining in the original square, this is the answer. Otherwise, 
treat the larger of these two surds as an integer and proceed as 
above. 
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Thus, to find a square root of 5 + 2√6, first write it as 5 + √24. 
Now 52 − 24 = 1 is a perfect square. Get 2 numbers (5 + 1)/2 and 
(5 − 1)/2, i.e. 3 and 2. 

Thus, the square root is √3 + √2. 
Similarly, for 29 + 2√210, first write it as 29 + √840. Now, 292 = 

841. We have, 841 − 840 = 1 which is a perfect square with square 
root 1. Then (29 + 1)/2 and (29 − 1)/2, i.e. 15 and 14 give the answer 
as √15 + √14. 

Note again that the method of Bhāskarācārya is quite general 
and it works for a general field situation, i.e. quadratic extensions 
of fields whose elements can be considered as quadratic for finding 
square root of a + √b, the method of Bhāskarācārya works. What we 
require is that a2 − b is a perfect square in the field. As an illustration 
let us find the square root(s) of a complex number z = A + iB. 

First write A + iB as A + √( − B2). As – B2 is not a perfect square, 
this is a surd expression over the field of real numbers. Now,  
A2 − ( − B2) = A2 + B2 = |z|2 is a perfect square over real numbers 
as it is non-negative. Its square root is √(A2 + B2) = |z|. 

Now get [A + √(A2 + B2)]/2 and [A − √(A2 + B2)]/2. The sum 
of the square roots of these expressions is the answer, i.e. √((A + 
|z|)/2) + √((A − |z|)/2). This is a complex number with first 
term purely real and the second term purely imaginary. Here, 
the √ sign denotes a non-negative real root or a purely imaginary 
root with non-negative real coefficient of i. The other square root 
is the negative of this one. 

It may be noted that the method of Bhāskarācārya works for 
finding square root of a + √b for the general case of field extensions 
even if a2 − b is not a perfect square in the given field but lies in 
a proper extension of the field. If we denote a root of a2 − b by c, 
then the answer is √((a + c)/2) + √((a − c)/2), and square of this 
quantity is a + √b. However, this answer is neither convenient, 
nor it is simpler than just writing √(a + √b). Thus, Bhāskarācārya 
requires that a2 − b is a perfect square and examples in which such 
conditions are not satisfied are called improper (asat). 

Justification for the method of Bhāskarācārya in the case of 1 
surd is as follows: 
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Suppose a + √b is the square of √A + √B. Hence, a + √b = A + B +  
√4AB. A + B = a, b = 4AB, so a2 − b = (A − B)2. This is a perfect square. 
Take its square root. A − B or B − A. Add any one to a and 

also subtract it from a. That gives 2A and 2B. Dividing by 2 we 
get A and B. 

We shall in what follows discuss the method of Bhāskarācārya 
in the 3-surd case with justification why and to what extent the 
method works and point out precautions for implementation by 
considering various examples. 

Dealing with Surd Expressions with 3 Surds 
Bhāskarācārya indicates the method to be followed if the surd 
expression contains 3 or more surds. Although he considers surd 
expressions with integer numbers, his method equally applies to 
surds with rational numbers or even elements from a field. 

Here, we first observe that if we have a surd expression with 
2 terms, it is either of the type a + √b or √a + √b. In both the cases 
the square is of the form a + √b. 

A proper 3 term surd expression is of the type a + √b + √c 
or √a + √b + √c. Here, it is assumed that no surd is an integer or 
rational multiple of any other, i.e. no further simplification of the 
surd expression is possible. The square of any such expression is 
of the type a + √b + √c + √d and thus has 3 surds in it. Similarly, 
square of a surd expression with 4 terms has 7 terms with one 
integer term and 6 surds, square of a surd expression with 5 terms 
has one integer and 10 surds, 6 terms correspond to 15 surds and 
more generally n terms correspond to C(n, 2) = n(n1)/2 surds. 
For example, a square of a surd expression cannot have just 2, 3, 
4, 5, 7, 8, 9, 11, etc. surds in it. It is thus clear why Bhāskarācārya 
proposes his method for finding square roots of surd expressions 
with 1, 3, 6, 10, 15 surds in the following verses: 

,dkfn&ladfyrferdj.kh•.Mkfu oxZjk'kkS L;q%A 
oxsZ dj.khf=kr;s dj.khf}r;L; rqY;:ikf.k AA 

dj.kh"kV~ds frl`.kka n'klq prl`.kka frfFk"kq p i×pkuke~ A 
:iÑrs% çksTÖ; ina xzkáa psr~ vU;Fkk u lr~ Do vfi AA 
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mRiRL;eku;k ,oa ewydj.;k vYi;k prqxqZ.k;k A 
;klke~ viorZ% L;kr~ :iÑrs% rks% fo'kksè;k% L;q% AA

viorsZ ;k yC/k ewydj.;ks HkofUr rk% p vfi A 
'ks"kfof/uk u ;fn rk% HkofUr ewya rnk rn~ vlr~ AA 

In a square there are one or more surds together. If the expression 
has 3 surds, we have to subtract from the square of the integer 
number a number equal to the sum of 2 numbers under radical 
sign. If it has 6 surds, 3 such should be removed. If it has 10 surds 
then remove 4 such. If it has 15 surds, then remove 5 such. If after 
removal, the difference is not a perfect square, then the example 
is not proper or it is asat. 

Now consider a square expression with 3 surds. This will have an 
integer term too and it will be the square of an expression of the 
type √A + √B + √C. Here none of A, B, C will be a multiple of any 
other by a square of a rational number. Otherwise, the 3 terms 
will merge into 2 or 1 term. Then A, B, C will be non-squares or 
at most one of them will be a perfect square. 
Example: Recall the example 5 + √24. 25 − 24 = 1 is a square. Square 
root is 1. 

(5 + 1)/2 and (5 − 1)/2 gives 3 and 2. So the square root of 5 
+ √24 is √3 + √2. 

Now for an illustration of B method in the above verses, 
consider a square with 3 surds. 
Example: (√3 + √5 + √7) 2 = 15 + √60 + √140 + √84. 

To find square root of 15 + √60 + √140 + √84 
Step I: Take any two surds together, e.g. √60 and √140. Take a = 15, 
b = 60 + 140 = 200. 

Imitate the procedure of finding the square root of a + √b. 
(15)2 = 225. 225 − 200 = 25. This is a perfect square. The square 

root is 5. By the method explained, (15 + 5)/2 =10, (15 − 5)/2 = 5. 
Thus, the square root of 15 + √200 is √10 + √5. 
Step II: Out of this reserve, the smaller one, viz. 5 as comprising a 
part of the final answer as √5. 
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Go ahead with 10 as an integer and consider the remaining 
surd, here 84 along with it, i.e. consider 10 + √84 as before. 

100 − 84 = 16. Square root = 4. (10 + 4)/2 = 7, (10 − 4)/2 = 3. 
Thus, the square root of 10 + √84 is √7 + √3. Using the reserved 
√5, the method of B tells us that the final answer is √5 + √7 + √3 
as expected. 

It may be noted in this problem that if we take any two of the 
3 surds, then also the method works. 

Take, for instance 60 and 84 from 15 + √60 + √140 + √84. Now, 
by the above method, 60 + 84 = 144, 225 − 144 = 81. Square root 
is 9. (15 + 9)/2 = 12, (15 − 9)/2 = 3. Reserve 3. Go ahead with 12. 
Consider 12 + √140. 144 − 140 = 4. Square root is 2. (12 + 2)/2 = 7, 
(12 − 2)/2 = 5. Answer √7 + √5 + √3. 

Try 140 and 84. 140 + 84 = 224. 225 − 224 = 1. Square root = 1. 
(15 + 1)/2 = 8, (15 − 1)/2 = 7. 

Reserve 7. Go ahead with 8. Consider 8 + √60. 64 − 60 = 4. 
Square root = 2. (8 + 2)/2 = 5, (8 − 2)/2 = 3. √5 + √3 + √7 is the 
answer. 

The reason why any two surds can be taken together in this 
method can be explained as follows: Suppose a + √b + √c + √d = 
(√A + √B + √C)2. 

Then a + √b + √c + √d = A + B + i + √(4AB) + √(4AC) + √(4BC). 
Then a = A + B + C. 

Take, for instance, b = 4AB, c = 4AC. Then d = 4BC. 
As per the method, in Step I, taking together first two surds, 

consider a2 − b − c. 
This becomes (A + B + C)2 − 4AB − 4AC = ( − A + B + C)2, which 

is a perfect square. 
The square roots are − A + B + C and A − B − C. Taking any of 

these roots, by the operation (a + root)/2 and (a − root)/2, we get 
B + C and A. Now in Step II, take the larger one of these two (bahvī 
karaṇī) as per the initial verses of Bhāskarācārya above, which is 
expected to be B + C. 

And here is the catch. Here for proceeding algebraically, we 
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must keep A for reserve for the final answer and go ahead with 
B + C. It is likely that actually the smaller number is B + C. So to 
get the correct answer we have to proceed with B + C. So larger 
of the two may not always work, contrary to the explanation of 
Bhāskarācārya. Thus, “one of them works” is the correct way 
of putting. Go ahead with B + C. Then consider B + C and the 
remaining surd √4BC. Thus, we get  + C + √4BC. By the method, 
(B + C)2 − 4BC = (B − C)2. The square roots are B − C and C − B. To 
B + C add any root and also subtract the root from B + C. Divide 
by two. This gives B and C. Using A in reserve, the answer is √A 
+ √B + √C. 

Since AB and AC have A common, AB and BC have B common, 
and BC and AC have C common, the method will work with the 
choice of any two surds of the three, provided at the end of Step 
I, we make the right choice of the number for working in Step II. 

To illustrate the problem in the last step we consider 
(√10 + √2 + √3)2 = 15 + √80 + √120 + √24. 
Now 225 − 80 − 120 = 25. Square root 5. (15 + 5)/2 = 10, (15 − 

5)/2 = 5. Here, if we keep 5 reserve as it is smaller and proceed 
with 10, we have to consider 10 + √24. 

Here we get 100 − 24 = 76 which is not a perfect square, so the 
method fails. On the contrary, reserving the larger number 10 for 
the final answer and proceeding with 5, we have to consider 5 + 
√24. Then 25 − 24 = 1 which is a perfect square with square root 
1. (5 + 1)/2 and (51)/2 give 3 and 2. So we get √10 + √3 + √2 as the 
correct answer. 

Thus, in this problem, one of the two choices obtained in the 
first step works, but not the other. In such an example we can get 
the final answer by selecting the choice at the end of Step I which 
takes us to the final answer and reject the other choice. 

A Misleading Example 
Here, we consider an example which gives an answer for both 
the choices obtained in Step I without internal contradiction. One 
answer is correct and the other is not. Take for instance (√35 + √6 + 
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√11)2 = 52 + √840 + √1540 + √264. Taking first 2 surds together, 2705 
− 840 − 1540 = 324. Square root is 18. The two numbers obtained 
are (52 + 18)/2 = 35, (52 − 18)/2 = 17. Keep 17. In Step II, go ahead 
with 35 (larger number). We get 35 + √264. 1225 − 264 = 961. Square 
root is 31. We get 2 numbers (35 + 31)/2 and (35 − 31)/2, i.e. 33 
and 2. Everything works without any contradiction. All required 
numbers are perfect squares and we think we have arrived at the 
answer √33 + √2 + √35. Unfortunately, this is a wrong answer, as 
can be checked by squaring the expression. But that does not mean 
that the given expression is not a perfect square. On the contrary, 
going ahead with 17, we get, 289 − 264 = 25 = 52, and (17 + 5)/2 = 
11 and (17 − 5)/2 = 6, giving us √35 + √6 + √11 as the right answer. 
This example illustrates that even if the internal required numbers 
are perfect squares, it may lead to a wrong answer. 

In an example like 10 + √40 + √60 + √24, taking first two surds 
we get 100 − 40 − 60 = 0, so (10 + 0)/2 and (10 − 0)/2 give the same 
values 5, 5. So there is no difficulty here. Keeping one 5 as reserve 
and going ahead with 5 we get √3 + √2 + √5 as the answer. 

In conclusion, the method of Bhāskarācārya works with a 
precaution. The statement of Bhāskarācārya about taking larger 
number in Step II does not always work: 

i`Fkd~ rn~ v/sZ ¶dj.kh};a L;kr~ ewys vFk cÞoh dj.kh r;ks% ;k A 
:ikf.k rkfu ,oe~ vr% vfi Hkw;% 'ks"kk% dj.;ks ;fn lfUr oxsZ¸ AA 

Take the sum of the square roots of the resulting two numbers. If 
no surds are remaining in the original square, this is the answer. 
Otherwise, treat the larger of these two surds as an integer and 
proceed as above. 

So at the end of Step I we get 2 numbers and one of them certainly 
works for going ahead when a perfect square surd expression with 
3 surds is given. The number does not work may be clearly in the 
intermediate steps when we do not get a required number as a 
perfect square. Sometimes all the required intermediate numbers 
are perfect squares, still the answer is wrong. Hence after getting 
the answer tallying is necessary and if required we should use the 
other number in Step I for proceeding in Step II. 
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Examples Given by Bhāskarācārya in 3-Surd Case 
In “Karaṇīṣaḍvidha” part of Bījagaṇita, Bhāskarācārya asks four 
problems in the 3-surd case. His first problem on 3-surd expression 
is: 

oxZs ;=k dj.;% nUrS% fl¼S% xtS% ferk% fo}u~ A 
:iS% n'kfHk% misrk% fda ewya czfwg rL; L;kr~ AA 

Oh learned! find the square root of 10 + √32 + √24 + √8. 
Here 100 − 32 − 24 = 44 is not a perfect square, so the expression 

is not a perfect square. Note that as explained earlier, it is not 
necessary to try other pairs of surds. Even if we do, 100 − 24 − 8 = 
68 and 100 − 32 − 8 = 60 are not perfect squares. 

The next example is: 

oxZs ;=k dj.;% frfFkfo'ogqrk'kuS% prqxqZZf.krS% A 
rqY;k n'k:ik<Ôk% fda ewya czfwg rL; L;kr~ AA

What is the square root of 10 + √60 + √52 + √12. 
 Here 100 − 60 − 52 is negative, so not a square. So the 

expression is not a perfect square, although 100 − 52 − 12 = 36 is 
a perfect square. Actually proceeding with 36 one gets (10 + 6)/2 
and (10 − 6)/2, i.e. 8 and 2. We cannot proceed with 2 as 4 − 60 is 
negative. Proceeding with 8, we get 8 + √60. Then 64 − 60 = 4 = 22. 
(8 + 2)/2 = 5 and (8 − 2)/2 = 3. √5 + √3 + √2 is the expected square 
root, but it is not as can be directly checked. Since for a perfect 
square surd expression, differences obtained from any two surds 
should be perfect squares, it is enough to get one difference not 
a perfect square. 

 Bhāskarācārya is testing the reader with another problem in 
the following verse: 

v"VkS "kV~i×k~pk'kr~ "kf"V% dj.kh=k;a ÑrkS ;=kA 
:iS% n'kfHk% misra fda ewya czfwg rL; L;kr~ AA 

Find the square root of 10 + √8 + √56 + √60. 
Consider the surd expression E = 10 + √8 + √56 + √60. Here we 

take first 2 surds together. Consider 100 − 8 − 56 = 36 which is a 
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square. Consider (10 + 6)/2 and (10 − 6)/2, i.e. 8 and 2. If we keep 
8 as reserve and take 2 for further analysis, we get 2 + √60. But 4 − 
60 is negative, so we have to abandon this. Take the larger integer 
8 for further analysis and reserve 2 as a part of the answer in the 
form of √2. Unused surd is √60. We are left with 8 + √60. This is 
going to be a perfect square of a surd expression. We have 82 = 64. 
64 − 60 = 4, which is a perfect square, with square root 2. Then (8 
+ 2)/2 and (8 − 2)/2 give 5 and 3. By Bhāskarācārya’s method this 
gives √5 + √3 as part of the answer. Final answer is obtained using 
previous √2. Thus, the square root is √5 + √3 + √2. However, after 
tallying we see that the square of √5 + √3 + √2 is not the original 
expression. This happens because the given expression E is not 
a square of such a surd expression. This will be more clear when 
we take the 2nd and 3rd surd in E. If we work out 100 − 56 − 60, 
we get − 16 which is a negative number and a non-square. Also, 
100 − 8 − 60 = 32 is a non-square. This illustrates that the method 
can mislead the reader if you start with a surd expression which 
is not a perfect surd square. 

After giving enough warning to the readers by these three 
verses that blindly following the method is not useful and 
the expression may not be a perfect square surd expression, 
Bhāskarācārya gives one problem in which the expression is a 
perfect square. 

pRokfja'kn~&v'khfr&f}'krh&rqY;k% dj.;% psr~ A 
lIrn'k:i;qDrk% r=k ÑrkS fda in czfwg AA 

Find the square root of 17 + √40 + √80 + √200. 
Here, 289 − 40 − 80 = 169 is a square with square root 13. (17 + 

13)/2 = 15 and (17 − 13)/2 = 2. Keeping 2 as reserve and proceeding 
with 15, we get 15 + √200. Now, 225 − 100 = 25 = 52. (15 + 5)/2 
= 10, (15 − 5)/2 = 5. Thus, the expected square root is √10 + √5 + 
√2. The reader is now careful and checks that the square of this 
expression is indeed the given expression. 

Remark
Although in the 3-surd case, all the three differences, obtained 
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from a square surd expression by taking any 2 surds out of the 3, 
are perfect squares, this is no longer the case when there are 6 surds 
in the expression. In that case and in later cases with 10 surds, 15 
surds, etc. mentioned by Bhāskarācārya, even if the expression is 
a perfect square, in the method of Bhāskarācārya only certain 3 
surds, 4 surds, 5 surds, etc. have to be taken together for subtraction 
from the square of the integer. 

Reference
Abhyankar, S.K., 1980, Bhāskarācārya’s Bījagaṇita and Its Translation, Pune: 

Bhaskaracharya Pratishthana. 
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The Fore-Shadowing of Banach’s
Fixed-Point Theorem 

Among Indian and Islamic Mathematicians: 
Procedural or Spatial Intuition?

Johannes Thomann

In mathematics, the way from conjecture to proof can be long. 
Fermat’s Last Theorem is famous. It was published in 1637 ce, not 
as a conjecture, but as a lemma for which Fermat claimed to have 
found a wonderful proof (demonstrationem mirabilem sane detexi). 
Unfortunately, the place for notes in the margin was not large 
enough to write it down (Hanc marginis exiguitas non caperet). The 
decisive proof of the theorem was published in 1995 by Andrew 
Wiles, 358 years after Fermat’s claim. Today, nobody believes 
that Fermat’s alleged proof was a valid one, but since he was 
such an eminent expert in number theory, he might have had a 
presentiment of something which seemed to make the theorem 
evident. In the following, a case will be described in which the 
time interval between the intuition of a lemma and its proof is 
even longer, in fact, more than a millennium.

Banach’s Fixed-Point Theorem
Metric spaces are a core topic in modern mathematics. One of the 
most frequently used lemmata is the fixed-point theorem, named 
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after the famous Polish mathematician Stefan Banach (1892–1945 
ce): 

A contraction mapping T of a complete metric space on itself has 
a unique fixed-point x*, which can be constructed by the iteration 
xn = T(xn − 1), starting with an arbitrary element x0. 

A simple example may serve as a demonstration. The real numbers 
form a complete metric space, and the so-called Heron method 
for extracting square roots demonstrates the construction of the 
fixed-point by iteration:

	 xn + 1 = xn − (xn
2 − a)/(2xn).

This converges towards the square root of a. If a = 9 and the start 
value x0 = 10, x0 = 5 and x0 = 2, one obtains the following values 
for x1, x2, x3 and x4:

Start 	     1st	    2nd	    3rd	     4th

Value x0	 Iteration x1	 Iteration x2	 Iteration x3 	   Iteration x4

  10	 5.45	 3.550688	 3.042704 	 3.00030000000
    5	 3.40	 3.023529	 3.000092	 3.00000000100

    2	 3.25	 3.009615	 3.000015	 3.000000000039

This method was already used by the Babylonian 
mathematicians. It converges with any positive value of a and 
any start value x0.
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In classical antiquity, iterations were occasionally used for 
other and more complex problems. Ptolemy used in the Almagest 
an iterative method for the calculation of the true conjunction of 
the sun and the moon. It seems that for him, iterative methods 
were only the last choice when everything else did not work. 

In India, the attitude of mathematicians towards iterative 
methods was different. They used them for all kind of problems.
Iterative methods used by Indian mathematicians fall into two 
categories: “fixed-point” and “two-point” techniques (Plofker 2002: 
168). Both were called indistinctly asakr̥t (not just once). The best 
known “two-point” technique is the Regula falsi. In the following, 
the focus will be on the “fixed-point” techniques. 

Like in the Mediterranean and the Middle East, one of the 
most simple iterative methods in Indian mathematics is the 
extraction of square roots. A formula, somewhat different from 
that of Heron, was used at least from about 500 ce onward. But 
in astronomy, iterative methods were used even in cases where 
analytical solutions were available (ibid.: 170).

Solar Eclipse Calculation according to Brahmagupta
From the many cases in which Brahmagupta (598 – after 665 ce) 
used iterative methods we take that of solar eclipse calculation. In 
chapter 4 of his Khaṇḍakhādyaka he describes his method how to 
find the true conjunction of the sun and the moon by an iterative 
technique:

Multiply the jyā (sine) of the moon’s mandakendra (mean anomaly) 
by the jiā of its natakāla (hour angle). Multiply the product again 
by 499 and divide by the square of the trijyā (radius). The result is 
in seconds. If the mandaphala (equation of the centre) of the moon 
is subtractive, add or subtract the result to or from its corrected 
longitude, according as it is in the eastern or western half of the 
sky. If the mandaphala is additive, subtract the result from the 
corrected longitude of the moon, whether it is in the eastern or 
western half of the sky (the result is its correct true longitude). 
The process should be repeated till the longitudes are fixed. 	
					      – Tr. Chatterjee 1970: 80
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In the present context, it is not necessary to go into the details 
of this calculation. What interests us here is the last instruction. 
Brahmagupta did not specify how many iterations should be made. 
He rather formulated a criterion “till the longitudes are fixed”, 
and that shows that he had a clear concept of convergence. The 
method works well, because the equation of the centre is small 
compared to the motion in mean longitude. 

Solar Eclipse Calculation according to Ḥabash al-Ḥāsib
Ḥabash al-Ḥāsib (d. after 869 ce), whose origin was in the Central 
Asian town Marw, lived in Baghdad, Damascus and Samarrā. Two 
Zījes, attributed to him, exist (Debarnot 1987; Thomann 2010). 
The earlier of the two is called al-Zīj al-dimashqī (the Damascus 
tables). In the calculation of a solar eclipse he describes an iterative 
method in detail:

Thus, after that, we enter the reminder into the column of the 
[argument] numbers [of the table]. What we find [in the column] 
next to it in degrees and minutes is the lunar parallax, and it is 
the first parallax. We add it to the true distance of the sun from 
the true mean heaven.1 We enter with the result of the true 
distance of the sun to which we have added [the parallax] into 
the column of the [argument] number. We take what we find 
[in the column] next to it in degrees and minutes, the second 
parallax. We add it to the true distance of the sun. We enter 
the result of the true distance of the sun with the addition of 
the second parallax into the column of the [argument] number. 
We take what we find [in the column] next to it in degrees and 
minutes, the third parallax. We add it to the true distance of the 
sun. Next we enter the true distance of the sun with what we 
have added – degrees and minutes of the third parallax – into the 
column of the [argument] number. We take what we find [in the 
column] next to it in degrees and minutes, the fourth parallax. 
We add it to the true distance of the sun. Next we enter the true 
distance of the sun with the addition of the fourth parallax into 

	 1 	 “Mean heaven” is not the intersection of the ecliptic with the meridian, 
but the point of the ecliptic with the maximum altitude; cf. Kennedy 
1956: 49.	
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the column of the [argument] value. We take what we find [in 
the column] next to it in degrees and minutes, the fifth parallax, 
and we call it “degrees of the smallest distance”.2

In this case, the approximation serves the calculation of the place 
of conjunction corrected for the lunar parallax. The method works 
well, because the parallax is small compared to the motion in 
longitude. Ḥabash insists on five iterations, which is far more than 
necessary. In other cases, he recommends only three iterations. 
The five iterations might have been motivated by the fact that in 
the case of solar eclipses precision is crucial. 

Ḥabash’s method for calculating eclipses is entirely different 
from that found in the Almagest (Kennedy 1956: 51). Ḥabash knew 
and admired Ptolemy’s Almagest. However, in many points he 
followed the methods of Indian astronomers, which were known 
through translations into Arabic. He did use Indian trigonometric 
functions sine and cosine throughout, and never used the Greek 
methods with chords (Thomann 2013: 546). For calculations with 
great numbers, he used Hindu-Arabic numerals (ibid.: 545-46). In 
the preface to the work, he mentions two Indian works by name, 
al-Sindhi[n]d and al-Arkand, both being adaptations of works by 
Brahmagupta (ibid.: 547-48). He seems to have had a special 
interest in Indian mathematics and astronomy, and he must have 
had some access to original Sanskrit material. In his chapter on 
the lunar mansions he provided a table with the Sanskrit names of 
the twenty-seven nakṣatras transliterated in Arabic script, together 
with their Arabic equivalents (ibid.: 548-52). Therefore, it is likely 
that he followed also Indian methods in his iterative technique for 
calculating solar eclipses. If one compares his description to that of 
Brahmagupta, some differences are conspicuous. Brahmagupta’s 
description is very brief, and the instruction for the iteration is 
laconic. In contrast, Ḥabash’s instructions are verbose and avoids 
any abbreviations. Furthermore, he follows the Greek style of 
addressing his readers by “we” in the first person plural, while 
Brahmagupta addresses them by “you” in the second person 

	 2	 Translation by the author. See the Appendix with the Arabic text, 
transcribed from MS Istanbul, Süleymaniye Kütüphanesi, Yeni Cami 
784, ff. 210v-211r.
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singular. The two styles correspond to the different traditions of 
teaching astronomy (ibid.: 510-13). In ancient Alexandria, scholars 
delivered lectures before a larger audience in lecture halls. The 
Indian tradition was that a scholar thought a pupil, who lived in 
his house, face to face. But common to both texts is the procedural 
approach, in which the technique is described only step by step 
without theoretical explanations, leave alone proofing arguments. 

One may assume with some confidence that Ḥabash was 
indeed inspired by Indian sources in his iterative technique, 
eventually by a work of Brahmagupta.3

The Kind of Intuition at Work for 
Creating Iterative Methods
The question which remains is: what kind of intuition was it 
which lead to such solutions, as described above? If one goes back 
to Banach’s fixed-point theorem, in most accounts of it, the term 
“contracting mapping” is used, and the structure on which the 
mapping is executed is called “space”. This points clearly to spacial 
intuition by which the theorem can be understood. But it is another 
question if eighth- and ninth-century astronomers were thinking 
alike. In favour of spacial intuition in astronomical reasoning in 
that time a slightly later author can give evidence. The tenth-
century astronomer al-Qabīṣī (d.967 ce) wrote a treatise on the 
examination of astronomers and astrologers. At the beginning he 
goes on to describe the different level of competence in astronomy. 
The highest level is obtained by the perfect astronomer who 
knows all the proofs of the Almagest, and who is able to establish 
astronomical tables based on his own observations. Most relevant 
in our context is the second level. The astronomer who has reached 
it, is able to form a mental image of the heaven at any time, but is 
not able to prove it (Thomann 2017: 926). Such an ability seems 
indeed a possible base for inventing iterative methods. If the 
inventor was able to make the step from mean longitude to true 
longitude, or from true position to apparent position corrected for 
parallax, in a mental image, the idea of iterative approximation 
would be well in range. 
	 3	 This has already been assumed by Kennedy/Transue 1956: 83.  
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However, there are reasons which speak against that 
explanation. In contrast to Greek astronomical works, in which 
geometrical arguments are omnipresent, Indian works of the 
earlier epoch lack such an approach. The techniques are explained 
by steps of calculation. Numerical values are transformed by 
arithmetical and trigonometric functions. Ḥabash followed this 
approach throughout, and, as has been said, did not provide 
geometrical proves. A caveat must be made. The manuscript of 
early Sanskrit works on astronomy do not contain geometrical 
drawings. However, Brahmagutpa refers in the Khaṇḍakhādyaka 
to a drawing to be made in order to represent the situation of an 
eclipse (Chatterjee 1970: 81-85; Plofker 2002: 98-102). In a later 
manuscript, a rudimentary eclipse diagram is extant (Plofker 
2002: 102, fig. 4.12). Only a few drawings are found in the Zīj of 
Ḥabash, but at least their usefulness for understanding complex 
situation is acknowledged.4

Perhaps it is wrong to present procedural and spacial intuition 
as an alternative. A possible strategy could have been to combine 
both forms of intuition, the use of a mental image, eventually 
sustained by drawings, and the observation of a series of numerical 
results obtained by calculation. Brahmagupta’s criterion “till the 
longitudes are fixed” points to an experience in calculation with 
a fixed number of fractional positions. 

In the case of extracting square roots one could think of 
algebraic reasoning. In the first estimate, x the unknown error 
may be e; then 
	 S = (x + e) ^ 2
	 S = x ^ 2 + 2xe + e ^ 2 
	 e = (S − x^2)/(2x + e)
then the error can be estimated by
	 e ≈ (S − x ^ 2)/(2x)
since e is small compared to x. The new estimate of x is:
	 x revised = x + (S − x ^ 2)/2x.

	 4	 MS Istanbul, Süleymaniye Kütüphanesi, Yeni Cami 784, ff. 163r, 165r. 
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The same reasoning can also be geometrically obtained: 
If the square with the side-length e is neglected, the red 

rectangles divided by the longer sides 2x are an estimate for e. 
However, while an intuitive geometrical reasoning can lead 

to the iterative technique in this simple case, in other more 
complicated cases this would not work anymore. The same holds 
for the algebraic approach. A function like φ (x) = b + k sin x, which 
was iteratively solved by Ḥabash, is a transcendental function, 
and was the object of many studies from the seventeenth to the 
twentieth centuries ce (Dutka 1997).

The consideration made so far are neither unambiguous, nor 
final. More examples should be examined, and spacial and pro-
cedural concepts should be drafted, which could have lead to the 
invention of the technique in question. The aim of this paper was 
only to point to the problem and to initiate a discussion on it in 
the hope to give clearer answers in the future.

Despite the rather negative result so far, amore general 
conclusion can be made. If one is looking for a real fore-shadowing 
of Banach’s fixed-point theorem as a general method for developing 
iterative solutions, one has to look at Indian works on mathematics 
and astronomy. The variety of problems which were solved by 
iterative techniques using the fixed-point approach shows that 

x
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recursive functions were the offspring of a general notion of 
contraction mapping. This was another great achievement which 
Indian mathematicians brought forward, and which was spread 
to the West by mathematicians of the Islamic world. 

Appendix: Arabic Text of Ḥabash’s Description of the 
Iterative Calculation of the Apparent Place of the Sun
The text is transcribed from the manuscript Istanbul, Süleymaniye 
Kütüphanesi, Yeni Cami 784, ff. 210v-211r.

قئاقدو جرد نم هتلابق دجن ام ددعلا رطس يف كلذ دعب يقابلاب لخدن مّث
 دعب ىلع هديزتف لوّألا رظنملا فالتخا كلذو رمقلا ؟رظنم/رطيم فالبخا

يقّحلا سمشلا

211rاندز امعم يقّحلا سمشلا دعب غلبمب لخدنو يقّحلا ءامسلا طسو نم 
[ذـ]ـخأنو ددعلا رطس يف هيلع

 دعب ىلع هديزنف ؟يناثلا رظنملا فالتخا قئاقدو جرد نم هتلابق دجن ام
[..] يقّحلا سمشلا

 يف يناثلا رظنملا فالتخا ةدايز عم يقّحلا سمشلا دعب غلبمب لخدن
[هتل]ابق دجن ام ذخأنف ددعلا رطس

 يقّحلا سمشلا دعب ىلع هديزنو ثلاثلا رظنملا فرلتخا قئاقدو جرد نم
فالتخا ةدايز عم

 جرد نم هيلع اندز امعم يقّحلا سمشلا دعب غلبمب لخدن مّث يناثلا رظنملا
رظنملا فالتخا قئاقدو

 فالبخا قئاقدو جرد نم هتلابق دجن ام ذخأنو ددعلا رطس يف ثلاثلا
عبارلا رظنملا

 عم يقّحلا سمشلا دعب غلبمب لخدن مّث يقّحلا سمشلا دعب ىلع هديزنو
رظنملا فالتخا ةدايز

 فالتخا قئاقدو جرد نم هتلابق دجن ام ذخأنو ددعلا رطس يف عبارلا
رظنملا

رغصألا دعبلا جرد هيمسنو سماخلا
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Arithmetic Progression
On Comparing Its Treatment in Old Sanskrit 

Mathematical Texts and Modern Secondary School 
Curriculum in India

Medha S. Limaye

Abstract: Quite a few topics in mathematics at secondary school 
level have a continued existence since long time in India. That 
means they are rooted in the then used famous Sanskrit texts 
composed and refined during 500–1400 ce period. The topic of 
arithmetic progression currently prescribed for the standard 10 
across the three major educational boards in India, viz. SSCE, 
CBSE and ICSE, is an example. This paper aims to evaluate the 
treatment given to this topic in medieval Sanskrit texts and that 
in the modern textbooks. The focus is to compare and contrast the 
method of exposing the concept, developing solution techniques 
and building numerical problems.

Keywords: Arithmetic progression, magic squares, numerical 
problems, śreḍhī-kṣetram.

Introduction
India has a long history of teaching and learning mathematics. 
Quite a few topics in mathematics at secondary school level have 
a continued existence since long time in India. They are rooted in 
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Sanskrit texts composed and refined during 500–1400 ce period. 
The topic of arithmetic progression currently prescribed for the 
standard 10 across the three major educational boards in India, 
viz. SSCE, CBSE and ICSE, is an example. It is observed that this 
topic has been handled in a variety of ways in the Sanskrit texts 
like the Āryabhaṭīya, Brāhmasphuṭasiddhānta, Pāṭīgaṇita, Gaṇitasāra-
Saṁgraha, Līlāvatī and Gaṇita-Kaumudī. 

This paper evaluates the treatment given to this topic in those 
medieval texts and that in the modern textbooks. The focus is 
to compare and contrast the method of exposing the concept, 
developing solution techniques and building numerical problems.

Arithmetic Progression in Modern 
Secondary School Textbooks
Arithmetic progression is defined as a sequence of numbers such 
that the difference between the consecutive terms is constant. 

The general form of an arithmetic progression is a, a + d, a + 
2d, a + 3d and so on. 

The sum of a finite sequence is called an arithmetic series. 
Basic formulae in this topic are derivation of the nth term and 

sum of the first n terms. 
tn = a + (n – 1)d 

and 
   Sn = n/2 [2a + (n – 1)d]. 

Here a = first term, d = common difference, n = number of terms. 
Two more formulae are also given in textbooks, viz.: 
Mean term = ½(a + tn) and Sn = n[½(a + tn)].

These results are derived by method of induction in modern texts. 
Further, a number of numerical problems are given for application 
of these rules in solving daily life problems.

Śreḍhīvyavahāra in Sanskrit Texts
Śreḍhī is the term for a progression in Sanskrit texts. Śreḍhī-
vyavahāra meant determination of progression. Js<h resembles a 
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staircase. Hindi word lh<+h and Marathi word f'kMh are similar to 
it. Sanskrit word Js.kh means a sequence. But the word Js<h became 
popular in practice. According to the Buddhivilāsinī commentary 
on the Līlāvatī, it is O;kogkfjdh;a laKkA There it is said that the term 
is employed by the older authors for any set of distinct substances 
put together.  

fHkUua fHkUua ;fRdf×k~pn~ æO;kfndesdhfØ;rs rPNªs<hR;qP;rs o`¼S%A The 
mention of “older authors” suggests that the concept was known 
for a long period and the word æO;kfndEk~ suggests that it was 
being used mainly in the context of wealth. The words loZ/uEk~] 
vUR;/uEk~] vkfn/uEk~] eè;/uEk~ used for different terms also suggest 
calculation of wealth. Old Sanskrit texts use the words vkfn] eq•] 
onu and other synonyms of face for the first term, p;] çp;] mÙkj 
for common difference, xPN for the number of terms, vUR;/uEk~ for 
the last term;  eè;/uEk~ for the mean term and loZ/uEk~] Js<hiQyEk~] 
xf.krEk~ for the sum of all terms in a finite arithmetic progression. 
Sanskrit texts of medieval period dealt with both arithmetic and 
geometric progressions.

Terminology Used in Modern Texts
Basic term Js<h  is retained in modern vernacular medium 
texts. Marathi texts use the term vadxf.krh J s<h for an arithmetic 
progression. NCERT Hindi textbooks use the term lekUrj Js<h for 
an arithmetic progression. NCERT Hindi textbooks use the terms 
पद for term, योग for sum and lkoZ varj for common difference. 
Marathi textbooks use the words पद, बेरीज and साधारण फरक 
respectively for them. Mean term is not considered important in 
modern texts.

Development of Solution Techniques in Sanskrit Texts
Sanskrit texts state the rules in sūtras with great economy in 
verse. The authors of original texts or the commentators explain 
the rules with illustrative examples. The solution techniques 
are sthāpanam (statement), karaṇam (solution) and sometimes 
pratyayam (verification). Formal rules and numerical problems 
based on arithmetic progression occur in the Bakśāli manuscript, 
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the Āryabhaṭīya, Brāhmasphuṭasiddhānta, Pātīgaṇita, Gaṇitasāra-
Saṁgraha, Līlāvatī and Gaṇita Kaumudī.

RULES IN ĀRYABHAṬĪYA

Āryabhaṭa gives the rules in two verses. The following verse gives 
the method to find arithmetic mean and the sum of all terms of 
an arithmetic progression. 

b"Va O;sda nfyra liwoZeqÙkjxq.ka leq•eè;Ek~A 
b"Vxqf.krfe"V/ua RoFkok|Ura ink/ZgrEk~AA – v. 19

Here if S = a + (a + d) + (a + 2d) + … to n terms, then the steps are 
as follows:
	 i.	 diminish the given number of terms (n) by one, 
	 ii.	 divide (n – 1) by two,
	 iii.	 increase by number of the preceding terms p, i.e.  [(n – 1)/2 

+ p],
	 iv.	 multiply by the common difference (d), i.e. [(n – 1)/2 + p] × 

d,
	 v.	 increase by the first term (a) of the whole series, i.e. a + [(n 

– 1)/2 + p] × d,
	 vi.	 the result is the arithmetic mean,
	 vii.	 multiply this arithmetic mean by the number of terms to get 

the sum = n × {a + [(n – 1)/2 + p] × d},
	 viii.	 if p = 0 then arithmetic mean = a + [(n – 1)/2] × d and S = n 

{a + [(n – 1)/2] × d}, and
	 ix.	 alternatively multiply the sum of the first and the last terms 

(A and L) by half the number of terms, i.e. S = n/2[A + L].

RULES GIVEN IN BRĀHMASPHUṬASIDDHĀNTA 

The rules given by Brahmagupta and the rest of the mathematicians 
for finding the sum, mean and last term of an arithmetic progression 
are substantially equivalent to those given by Āryabhaṭa.

Brahmagupta gives the rule in the following verse:

inesdghueqÙkjxqf.kra la;qÙkQekfnuk¿UR;/uEk~A



|  219Arithmetic Progression

vkfn;qrkUR;/uk/± eè;/ua inxq.ka xf.krEk~AA
		       – czkãLiQqV fl¼kUr XII.17
The period less one, multiplied by the common difference being 
added to the first term is the amount of the last term, i.e. a + (n 
– 1) × d = L.

Half the sum of last and first term is the mean amount, which is 
multiplied by the period is the sum of the whole, i.e. S = n/2[A + L].

RULES GIVEN IN GAṆITA-SĀRASAṀ̇GRAHA

Mahāvīrācārya too gives the same basic rules. But his method 
of exposing the concept and developing solution techniques is 
different. In the first chapter Parikarmavyavahāra, he gives two 
distinct operations. He uses the term saṅkalita – addition for 
summing the terms of a sequence beginning with the first term in 
an arithmetic progression. Further, according to him, any portion 
of the series chosen off from the beginning is iṣṭa and the rest of 
the series is śeṣa, which forms the remainder series. The sum of 
those śeṣa terms is called vyutkalita – subtraction.

Again in Js<hc¼lÄ~dfyrEk~] in the chapter feJdO;ogkj (mixed 
operations), he has given the formula to find the sum of the series 
in arithmetic progression in which the common difference is either 
positive or negative. His formula ghukf/dp;lÄ~dfyr/uku;ulw=ke~ is 
as follows:

O;sdk/Zinksukf/dp;?kkrksukfUor% iqu% çHko%A 
xPNkH;Lrks ghukf/dp;leqnk;lÄ~dfyrEk~ AA

				      – VII.290
The first term is either decreased or increased by the product 
of the negative or the positive common difference and the 
quantity obtained by halving the number of terms in the series as 
diminished by one. Then this is multiplied by the number of terms 
in arithmetic progression to get the sum of all terms.

So his formula is S = [a ± (n – 1)/2 × d] × n.
Mahāvīrācārya discusses series involving fractional terms, 

fractional common difference, and fractional number of terms too.
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RULES GIVEN IN LĪLĀVATĪ

In the Līlāvatī, Bhāskara II gives similar rules to find the last term, 
the mean and the sum.

O;sdin?up;ks eq•;qd~ L;knUR;/ua eq•;qXnfyra rRk~A
eè;/ua inlÄ~xqf.kra rRloZ/ua xf.kra p rnqÙkQEk~ AA
				                    – v. 121

The common difference multiplied by the period less one, and 
added to the first term, is the last term. That, added to the first and 
halved, is the amount of the mean. That multiplied by the period 
is the sum of the finite arithmetic progression.

ĀRYABHAṬA’S SECOND RULE

The second verse in the Āryabhaṭīya gives a complicated formula 
for finding the number of terms when the sum, first term and 
common difference are known.

xPNks¿"VksÙkjxqf.krkn~ fnxq.kk|qÙkjfo'ks"koxZ;qrkRk~A 
ewya f}xq.kk|wua pksÙkjHkftra l:ik/ZEk~AA – v. 20

Here the steps are as follows:
Multiply the sum by eight and by the common difference (8S × d).
Increase that by the square of the difference between twice the 

first term and the common difference [8Sd + (2a – d)2].
Take the square root of that 8 2 2Sd a d� �( ) .
Subtract twice the first term 8 2 2 2Sd a d a� � �( ) .
Divide by the common difference 8 2 2 2Sd a d a d� � ��� ��( ) / .
Add one and finally divide by two

8 2 2 2 1 2Sd a d a d� � ��� �� �� �( ) / / .
This gives the formula as if S = a + (a+ d) + (a + 2d) + … to n 

terms, then 

n dS a d a
d

�
� � �

�
�

�
�

�

�
�1

2
8 2 2 1

2( )

W.E. Clark, in his translation of the Āryabhaṭīya, quotes the 
remark of Rodet, who translated and published the translation of 
Gaṇitapāda in the Journal Asiatique in 1879, as:
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The development of this formula from the one preceding 
rule seems to indicate knowledge of the solution of quadratic 
equation in the form ax2 + bx + c = 0. 

All other mathematicians too give sub-rules and numerical 
problems to calculate one unknown quantity from rest of the three 
given quantities.

Śreḍhīkṣetram in Sanskrit Texts  
Āryabhaṭa, Mahāvīrācārya and Bhāskara II discuss series only in 
terms of sequences of numbers. But rules given by Śrīdharācārya 
and Nārāyaṇa Paṇḍita are remarkable as they have given 
geometrical interpretation of an arithmetic progression. That 
is why we come across series with fractional periods, negative 
periods, negative sums and sums equal to zero in their texts. Before 
discussing the rules in these two texts, it is necessary to know 
about the concept śreḍhīkṣetram in Sanskrit mathematical texts.

Śreḍhī-vyavahāra was interpreted geometrically by some Indian 
mathematicians. Bhāskara I, in his commentary on the Āryabhaṭīya, 
defines mathematics as:

xf.kra f}çdkjEk~  – jkf'kxf.kre~ {ks=kxf.krEk~A 

Further, he states that progression and shadow come under 
geometry: 

vuqikrdqêðkdkjkn;ks xf.krfo'ks"kk% jkf'kxf.krs¿fHkfgrk% Js<hPNk;kn;% {ks=kxf.krsA 

P r̥ t h ū d a k a s vā m ī  h a s  r e f e r r e d  t o  S k a n d a s e n a  i n 
Brāhmasphuṭasiddhānta XII.2 as: 

;Pp LdUnlsukpk;Zs.k Js<hU;k;su lÄ~dfyra çnf'kZra rr~ lÄ~dyua {ks=kçn'kZuk;A

But we do not find explanation by them why progression comes 
under geometry. Śrīdharācārya and Nārāyaṇa Paṇḍita are the 
only two authors, who have applied the method of diagrammatic 
representation to problems connected with arithmetic progression 
in their works Pāṭīgaṇita and Gaṇita-Kaumudī ̄respectively. Both the 
texts discuss in detail śreḍhīkṣetram (series figures). They are plane 
figures resembling a trapezium with equal flank sides or in some 
cases they are made of two triangles.
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RULES GIVEN IN PĀTĪGAṆITA AND GAṆITA-KAUMUDĪ

Śrīdharācārya and Nārāyaṇa Paṇḍita have considered arithmetic 
progression as a sequence of numbers as well as in the form of a 
geometric figure. So, Nārāyaṇa Paṇḍita has discussed progressions 
in two separate chapters in the Gaṇita-Kaumudī. In the chapter 
titled Śreḍhī-vyavahāra, considering the arithmetic progression as 
a sequence of numbers, he gives the usual rules for obtaining the 
last term, mean and the sum of all the terms of a finite arithmetic 
progression.

O;sdin?up;ks eq•;qÙkQks¿UR;/ua rq rRiqu% lkfnA
nfyra eè;/ua rr~ inxqf.kra tk;rs xf.krEk~AA

O;sdink/Z?up;% lkfn% inlÄ~xq.k% Hkosn~xf.krEk~A
		           – Xkf.kr dkSeqnh, pt. I, p. 105

Śrīdharācārya too gives similar rule to arrive at the sum as: 

O;sdink/Z?up;% lkfn% inlÄ~xq.kks Hkosn~ xf.krEk~A
				                – ikVhxf.kr v. 85

ŚRĪDHARĀCĀRYA’S RULES IN THE 
CONTEXT OF ŚREḌHĪKṢETRAM

The second line of the above verse in the Pātīgaṇita is: 

Js<h{ks=ks rq iQya Hkweq•;ksxk/ZyEcgfr%AA – v. 85 

Here, the area of the corresponding series figure is given as the 
area of an isosceles trapezium by the formula: Area = (base + 
face)/2 × altitude.

Śrīdharācārya, in the beginning of the chapter on series in the 
Pāṭīgaṇita, says:

foLrkjks¿Yiks¿/Lrknqifj egku~ L;kn~ ;Fkk 'kjkoL;A
Js<h{ks=kL; rFkk xPNleks yEcdLrL;AA
				           – ikVhxf.kr v. 79

According to him, as in the case of an earthen drinking pot, the 
width at the base is smaller and at the top greater, so also is the 
case with a series figure. The altitude of that series figure is equal 
to the number of terms of the series.	
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Śrīdharācārya gives the details of constructing the series figure 
in the following verses:

yEcddjs i`Fkd~ i`Fkfx"Vkfnp;su rRiQya HkofrA
inesda rYyEc'p;nyghua eq•a /jk HkofrA lp;k lk L;kn~ oD=akA 

					        – ikVhxf.kr v. 80-81
The partial areas of the series figure for the successive cubits of the 
altitude form a series which begins with the given first term and 
increase successively by the given common difference of the series. 
The number of terms, say one, is the altitude of the corresponding 
series figure; the first term of the series as diminished by half 
the common difference of the series is the base; and that base 
increased by the common difference of the series is the face. 

Śrīdharācārya represents arithmetic progression in the form 
of an isosceles trapezium narrower at the base and wider at the 
top with the partial areas as shown in fig. 15.1. It should be noted 
that Śrīdharācārya has taken (a – d/2) as the base of the figure. 
He constructs the series figure for unit altitude and calls it as 
hastikā-kṣetra, because the unit is hasta. According to his rule, base 
= (a – d/2) and face = (a – d/2) + d = a + d/2. Then the face of the 
actual series figure is calculated using the principle of proportional 
increase. 

Further, he gives the rule as:

fig. 15.1 Arithimetic progression 
in the form of an Isosceles

 

bRFka Js<h{ks=ka ÑRos"VyEcds eq•a dYI;e~ A
b"VkoyEcxqf.kra /jksueq•eofu;qXonuEk AA
				      – ikVhxf.kr v. 84
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Having constructed the series figure in this manner, one should 
determine the face for the desired altitude by the following rule:

If the altitude is assumed as unity, then the face minus the 
base multiplied by the desired altitude and then increased by the 
base gives the face for the desired altitude.

So the face for altitude n = (face – base) n + face 
= [(a + d/2) – (a – d/2)] n + (a – d/2) 
= d × n + a – d/2 = a + (n – ½) d.

According to the above rules, base = (a – d/2), face = a + (n – ½) 
d and altitude = n.

But area = (base + face)/2 × altitude
	            = ½ [(a – d/2) + a + (n – ½) d] × n
	            = ½[a – d/2 + a + nd – d/2] × n 
	            = ½[2a + (n – 1) × d] × n 
	            = n/2[2a + (n – 1) × d].

NĀRĀYAṆA PAṆḌITA’S RULES IN THE 
CONTEXT OF ŚREDHĪKṢETRAM

Nārāyaṇa Paṇḍita’s isosceles trapezium is with wider base and 
narrower top (fig. 15.2). Nārāyaṇa Paṇḍita, in the context of 
śreḍhīkṣetram, gives the first rule in the Gaṇita-Kaumudī as:

vkfn'p;nyghuks onua inp;o/% lonuks Hkw%A
xPNks yEcks xf.kra Js<hxf.krsu rqY;a L;kRk~AA 

				             – v. 73

 

fig. 15.2: Isosceles trapezium with 
wide base and narrower top

The first term diminished by half the common difference is the face, 
the product of the period and the common difference increased 
by the face is the base; the period is the altitude and the area is 
the sum of the series. 
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Here the face is (a – d/2) and the base is (n × d + a – d/2). 
Nārāyaṇa Paṇḍita’s second verse in the Gaṇita-Kaumudī gives 

the method for calculating the base at any intermediate position 
on the altitude, i.e. when the altitude is any fractional part of the 
whole altitude: 

voyEc•.Mxqf.kr'p;% Loonusu la;qrLrn~Hkw%A 
				             – v. 74
The fraction of the altitude multiplied by the common difference 
and combined with its own face is the base (of any segment of 
the trapezium). 

But area = (base + face)/2 × altitude 
	             = n/2 [(n × d + a – d/2) + (a – d/2)]
	             = n/2[n × d + 2a – d] = n/2[2a + (n – 1) × d]

SERIES FIGURE IN THE FORM OF TWO TRIANGLES

The following verse in the Gaṇita-Kaumudī gives the rule to get the 
sum if the face is negative:

v/jksÙkjs Hkosrka =;lzs Hkwonu&Hkwfeds Lo.kZsA
foonudqârsdqeq•s yEc?ukS =;lz;ksyZEckSAA

rn~xqf.kr;ks'p fooja Js<hxf.krsu ok rqY;Ek~A 
		           – Pt. II, vv. 75-76½ 
According to Nārāyaṇa Paṇḍita: 

½.kxs onus rq feFkks HkqtkS lekØE; o/ZsrsAA 
				       – v. 74
So when the face (a – d/2) is negative the two flanks will cross each 
other and grow. The figure shows two triangles one positive and 
one negative with the base and the face as the bases.
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fig. 15.3

According to Śrīdharācārya, when the base (a – d/2) is negative the 
series figure reduces to two triangles situated one over the other. 
Here d/2 > a. Śrīdharācārya’s figure is as given below: 

 

 

fig. 15.4

His rule to get the altitudes in this case is as follows:

mifj =;Js yEcks Hkwfefrjfgrsu Hkkftra onuEk~A
:ikÙkL;kixes¿/L=;Js tk;rs yEc%AA

			       – ikVhxf.kr v. 83
Here the base is negative and the face is positive.

So altitude of the upper triangle 

�
�
�

�
face period
base face( )

.whole altitude

And altitude of the lower triangle 

�
�
�

�
base period
base face( )

.whole altitude

The rule given in the Gaṇita-Kaumudī is same but there the face 
is negative and the base is positive. In each case the difference of 
the areas of the triangles will be equal to the sum of the series. 
As illustrations both the texts give numerical problems having 
positive face, negative face, zero face, fractional period and even 
negative period. 
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It is noteworthy that Nīlakaṇṭha, in his commentary explains 
Āryabhaṭa’s second rule by constructing śreḍhīkṣetram. Also the 
Kriyākramakarī commentary on the Līlāvatī, demonstrates similar 
formula given by Bhāskara II, geometrically by using śreḍhīkṣetram.

Numerical Problems 
Sanskrit texts give a number of numerical problems to be solved 
without geometrical figures simply applying the formulae. The 
distinguishing feature of Sanskrit texts is the rich variety of 
problems related to the traditions and social customs of that time. 
Here are some examples:

i ÛÓfHkjk|% 'kÄ~•% i ÛÓksu'krsu ;ks HkosnUR;Ek~A
,dkn'k'kÄ~•kuka ;ÙkUewY;a Roekp{oAA
			      – HkkLdjÑr vk;ZHkVh;Hkk";

The prices of 11 conch shells are in arithmetic progression. The 
price of the smallest conch shell is Rs. 5 and that of the largest 
one is Rs. 95. What is the total price of all the 11 conch shells?

dsukfi x`gtkekrq% "kksM'kk¿¿|s fnus i.kk%
	 çnÙkk% iq.;iq";kFk± f}gkU;k p rr% ØekRk~A
fnols uoes tkrs fd;UrLrL; rs i.kk%
	 laihMÔSrRlekp{o ;fn Js<Ôka Je% Ñr%AA 
				       – czkãLiQqVfl¼kUr

As a form of good act, a man gifted an amount of 16 paṇa to 
his son-in-law on the first day. Then he went on reducing the 
gift amount by 2 paṇa on each successive day. If you have taken 
pains in learning arithmetic progression, calculate and tell the 
total amount gifted in 9 days. 

=;k|sdksÙkjo`¼~;k ;kR;sd% çfrfnua ujLRoU;%A
n'k ;kstukfu fd;rk dkysu r;ksxZfrLrqY;kAA
				              – ikVhxf.kr

One man travels with an initial speed of 3 yojanas per day and 
accelerates by 1 yojana per day. Another man travels with the 
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constant speed of 10 yojanas per day. In how many days will 
they cover equal distance?

}~;kfnuk f=kp;suk¿¿'kq fnuS% "kfM~Hk% leftZrEk~A
of.ktk dsufpUeè;eUR;a p xf.kra onAA 
				        – xf.krdkSeqnh

A merchant earned 2 units of money on the first day, increased 
his earning by 3 on each successive day and thus earned money 
for 6 days in all. Quickly tell his average earnings, final day 
earnings and total earnings.

f}ÑfreZq•a p;ks¿"VkS uxjlglzs lefpZra xf.krEk~A
xf.krkfC/leqÙkj.ks ckgqcfyu~ Roa lekp{oAA
				            – xf.krlkjlaxzg

The offerings to the gods were made in 1,000 cities, commencing 
with 4 and increasing the amount by 8 successively. Oh learner! 
who has enough strength of arms to cross over the ocean of 
arithmetic, speak out the total value of the offerings.

çFkefnus lk/Zs }s :ik/Zp;su pkU;fnols"kqA
foÙka ç;PNfr /uh dsH;% fda lSdeklsuAA 
				       – f=k'kfrdk

A wealthy man donates two and half rupees on the first day 
to some people and increases the amount by ½ rupee on each 
subsequent day. Find the total amount donated by him in one 
month (1 month = 30 days).

i ÛÓkf/da 'kra Js<hiQya lIr ina fdyA
p;a =k;a o;a foÁks onua on uanuAA 
				          – yhykorh

It is known that the sum of all terms of an arithmetic progression 
is 105, number of terms is 7 and common difference is 3. Then, 
Oh child! tell the first term.

The Pāṭīgaṇita and Gaṇita-Kaumudī texts contain problems on 
śreḍhī-kṣetram. There are a number of arithmetic progression with 



|  229Arithmetic Progression

diagrams of their średhī-kṣetras. Here is one example:
If a = 1/2, d = 3, n = 10/3 find the sum (Gaṇita-Kaumudī, v. 62).
Here 
	 f = a – d/2 = ½ – 3/2 = – 1 (negative), 
	 b = n . d + f = 10/3 × 3 – 1 = 9

So, the figure will be in the form of two inverted triangles joined 
at their apexes as shown in fig. 15.5:

  

fig. 15.5: Two triangled joined at their apexes

Perpendicular to the base = (p × b)/b – f = 30/10 = 3
Perpendicular to the face = (p × f)/b – f = 1/3
Here area of the bigger triangle = ½ × base × height 
				            = ½ × 9 × 3 = 27/2.
And area of the smaller triangle = ½ × face × height 
				             = ½ × 1 × 1/3 = 1/6.

So the area of the śreḍhī-kṣetra = 27/2 – 1/6 = 40/3 which is the 
sum of the arithmetic progression.

Correlation of Arithmetic Progression with 
Magic Squares (Magic Squares)
Another important feature of the Sanskrit text Gaṇita-Kaumudī 
is the correlation of arithmetic progression with magic squares. 
Nārāyaṇa Paṇḍita established relations between terms of a magic 
square and those of an arithmetic progression. He gives general 
methods for constructing magic squares along with the principles 
governing such constructions. 
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He says:

loZs"kka Hkæk.kka Js<hjhR;k Hkosn~ xf.krEk~A
;s"kka xf.kreHkh"Va lkè;kS rs"kka eq•çp;kSAA 

			             – XIV.5
All types of magic squares happen to be like the mathematics 
of series so we have to obtain the first term and the common 
difference of the magic squares whose sum of all the numbers is 
desired. 

He gives the following definitions. The sum divided by the 
order is the square’s constant. The total number of cells becomes 
the number of terms of the series and the square root of the former 
happens to be the caraṇa of the square.

He gives a rule to find the first term and the common difference 
of the arithmetic progression corresponding to a magic squares 
using the equation: 

– sd + T = na. 
Here 

a = the first term, 
d = the common difference, 
n = number of cells, 
s is the sum of the first (n – 1) natural numbers, and 
T is the total.
In an example, he has asked to find the first term and the 

common difference of the magic square of order 4 whose square’s 
constant is 40. 

Here square’s constant is 40, order = 4, so number of terms = 16.
So, T = 40 × 4 = 160 and s = sum of first 15 natural numbers = 120.
Here by solving the equation – s × d + T = n × a we have – 15d 

= 2a – 20.
So we get two possibilities by solving using kuṭṭaka:
1. a = 10 and d = 0 

and  
2. a = – 5 and d = 2.
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In the first case each cell will contain 10, so another possibility 
should be considered. Then we have an arithmetic progression     
– 5, – 3, – 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25.

Another square where a = – 14, d = 4, square’s constant = 64.
We have an arithmetic progression – 14, – 10, – 6, – 2, 2, 6, 10, 

14, 18, 22, 26, 30, 34, 38, 42, 46. 
The arithmetic progressions can be represented as magic 

squares:

 – 14 14 34 30

38 26 – 10 10

 – 2 2 46 18

42 22  – 6 6

 – 5 9 19 17

21 15  – 3 7

1 3 25 11

23 13  – 1 5

Other beautiful patterns given in the Gaṇita-Kaumudī can be 
formed with the help of magic squares and magic rectangles. 
There are figures whose cells are divided by their diagonals into 
two equal parts. Figures in the form of lotus with 8 petals, figures 
named as sarvatobhadra, padmabhadra and figures within figures 
are very attractive.

Concluding Remarks
Mathematics textbooks can be regarded as the most accountable 
historical proof for the whole mathematics education history. 
Also textbook is one of the major factors that influences students’ 
learning. The topic of arithmetic progression is currently 
prescribed for the standard 10 across the three major educational 
boards in India, viz. SSCE, CBSE and ICSE. This topic has historical 
significance in mathematics education in India. The fifth-century 
mathematician Āryabhaṭa was the first Indian mathematician to 
give properties and rules regarding arithmetic progression in 
the Āryabhaṭīya. The topic has been handled in a variety of ways 
from educational point of view in other Sanskrit texts too. The 
method of exposing the concept and the development of solution 
techniques shows some remarkable differences in ancient and 
modern texts. Two important points to be noted are geometrical 
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interpretation of arithmetic progression and the relation of an 
arithmetic progression to magic squares. 

Diagrammatic treatment of arithmetical series seems to 
be a unique feature of Sanskrit texts. This type of geometrical 
interpretation of an arithmetic progression is not found in modern 
texts. Geometrical representation would be useful to show a 
relation between two branches, viz. arithmetic and geometry. 
Actually multiple representations should be appropriately 
integrated into textbooks to enhance conceptual understanding 
of the students. The mention of old Sanskrit texts in this context 
would arouse students’ curiosity in our history and culture too. 
Even in modern textbooks one of the aims is given as to develop 
an interest in mathematics. This is possible by recreational 
mathematics, and magic squares are very important in the field 
of recreational mathematics. Activities like constructing magic 
squares should be integrated into the classroom to enable students 
to better understand mathematics.

The utility of mathematics in daily chores is appreciated by 
all. Mathematics learning should connect to real world problems. 
Numerical problems in modern texts are related to daily life 
activities of modern people. These applications include earning 
interest on savings, loan repayment instalments, potato race 
where the distance between the potatoes increases with a common 
difference, an asset depreciated by a fixed amount per year, 
building a ladder with sloping sides, etc. The numerical problems 
given in Sanskrit texts give a flavour of different time in India. It is 
our cultural heritage. For example, Sanskrit texts give a number of 
problems about offerings to charities. This shows the importance 
given to this life value in those days. So some numerical problems 
of that period can be included in modern texts. 
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Bulletin of Indian Society of History of Mathematics. 
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Contributions of Shri Bapu Deva Shastri 
to Līlāvatī of Bhāskarācārya

B.Vijayalakshmi

In the texts on the history of mathematics in ancient India, the 
names of Āryabhaṭa and Bhāskara occupy prominent position. The 
Līlāvatī of Bhāskara is perhaps the most read book on vyaktagaṇita 
(arithmetic) in ancient India, as well as in modern times, and 
this book has been translated and critically edited by various 
mathematicians in different languages all over the world. Bapu Deva 
Shastri (BDS), a reputed mathematician of the nineteenth century, 
has critically edited the Līlavatī in Sanskrit in his book Līlāvatī: 
Treatise on Arithmetic by Bhāskarācārya (Benares 1883) with the 
explanations inclusive of new examples, new sūtras and upapattis.

Born in Pune, in the year 1821, Nrisimha Shastri alias Bapu 
Deva Shastri got his education in algebra and arithmetic in Nagpur. 
Lancelot Wilkinson recognized his talents in Gaṇitaśāstra and 
helped him getting a post in a reputed pāṭhaśālā in Kāśī. He was 
a keen and enthusiastic scholar of ancient Indian mathematics. 
He has brought out books related to Indian mathematics, which 
include translation of the Sanskrit works such as the Sūrya-
Siddhānta, Siddhānta-Śiromaṇi and Līlāvatī of Bhāskarācārya into 
English. He has conducted classes for teachers and research 
scholars; presented papers at various university’s national and 
international seminars. He has made certain value addition in the 
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topics of Division, Square, Supposition, Pulverization, Progression 
etc. for the benefit of better understanding of the students. In the 
present paper, I wish to throw light on some of  his techniques and 
examples as detailed in the book mentioned above.

1 Chapter on Division 
The sūtra given is: 

HkkT;k¼j% 'kq¼~;fr ;n~xq.k% L;knUR;kRiQya rR•yq HkkxgkjsA
lesu dsukI;ioR;Z gkjHkkT;kS Hkos}k lfr laHkos rqAA 

bhājyāddharaḥ śuddhyati yadguṇaḥ syādantyātphalaṁ tatkhalu  
							              bhāgahāreA
samena kenāpyapavartya hārabhājyau bhavedvā sati saṁbhave  
tuAA						       – Līlāvatī XIX

Find the largest integer whose product with the divisor can be 
subtracted from the extreme left-hand side digit(s) of the dividend. 
This integer is the first digit of the quotient. If the divisor and the 
dividend have a common factor, then the common factor can be 
cancelled and the division is carried out with the remaining factors.

When the divisor has more digits, the method given by Bapu 
Deva Shastri is as detailed below: 

;nk Hkktdks¿usdkÄ~dfof'k"V% L;kr] rnk y?kqHkZtu çdkj%A yfC/% 
vVxqf.krHkktda vUR;xqf.kr HkkT;k/ks u fy•sr~A fdUrq re~ vUR; 
HkkT;kf}'kksè; 'ks"ka U;lsr~A rPNs"kkoxed çdkjks¿;e~ A

yadā bhājako ‘nekāṅkaviśiṣṭaḥ syāt, tadā laghurbhajana 
prakāraḥA labdhiḥ aṅkaguṇitabhājakaṁ antyaguṇita bhajyādho 
na likhetA kintu tam antya bhājyādviśodhya śeṣaṁ nyasetA 
taccheṣāvagamaka prakāro ’yamA 	   – Līlāvatī (BDS), p. 5

Do not write the product of the divisor and quotient under 
the dividend, but subtract it from the dividend and write the 
remainder under the dividend.

It is to be noted that this method of division is similar to the 
Hindu method of performing operations on a pātī. In the pātī 
method, here is an example: 1620/12.
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The example given by Bapu Deva Shastri is as follows:
	 Hkktd%	    HkkT;%		       yfC/%		      'ks"kEk~

	 Divisor     Dividend 	 Quotient          Reminder

	    5231)      354269831         (67725	            356

			   40409 	        1

			     37928 	        2	

			       13113	       3	

			         26511      4

			             356.     5	

Now 1 2 3 4 5  are calculated as follows:
	          Divisor  Dividend   Quotient     Remainder
		  5231) 354269831 (67725  	             356	
			   31386
			   ———		
			     40409	      1
			     36617 

			     —————-	

			      37928 	       2	
			      36617
			     ———
			        13113 	      3	
			        10462  
			       ——— 
			          26511      4
			         26155 
			             356.      5

Stage No./Divisor Line of Quotient
First 1620

    12
Second   420

    12
   1 

Third   420
     12

   1

Fourth      60
      12

  13

Fifth       60
      12

  13

Sixth         0 135
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Here Bapu Deva Shastri also gives some rules with respect to 
the division by numbers, for easy apavartanam (abridgement) – 
reduction of the dividend and divisor.

v=kkiorZuL; 'kh?kzeqifLFkr;s dfrpu lÄ~[;k fo'ks"k/ekZ% çn';ZUrs A 

atrāpavartanasya śīghramupasthitaye katican saṁkhyā 
viśeṣadharmāḥ pradarśyante A		  – Līlāvatī (BDS), p. 6

These are the rules to test for divisibility by 2, 3, 4 …. 11.

Finding Square of a Number
The sūtra given is: 

lef}?kkr% Ñfr#P;rs¿Fk LFkkI;ksUR;oxkZs f}xq.kkUR;fu?uk%A
LoLoksifj"BkPp rFkkijs¿Ä~dkLR;ÙkQ~okUR;eqRlk;Z iqu'pjkf'ke~AA

samadvidhātaḥ kr̥tirucyate ‘tha sthāpyontyavargo  
				                    viguṇāntya-nighnāḥ AA
svasvopariṣṭhācca tathāpare ’ṅkāstyaktvāntyamutsārya  
					                  punaścarāśim AA
					            – Līlāvatī XX

The product of a number with itself is called a square. To square 
a number, use the following procedure. First write the square of 
the extreme left-hand digit on its top. Then multiply the next (i.e. 
second) digit by the double of the first digit and write the result 
on the top. Next multiply the third digit by the double of the first 
digit and write the result on the top. In this way arrive at the unit’s 
place. Next cross the first digit and shift the number so formed one 
place to the right. Then repeat the same procedure. Finally add all 
the products written at the top and the sum is the required answer.

The method suggested by Bapu Deva Shastri is as follows:

oxkZFk± dk;± vk|Vrks ok vUR;Vrks ok lekue~A 
vargārthaṁ kāryaṁ ādyaṅkato vā antyaṅkato vā samānam A

– Līlāvatī (BDS), p. 7

The process of squaring may start from the first digit or the last 
digit:
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	 1. 	Multiply the first digit with itself and then with twice the 
first digit multiply the digits to the left of it and add both. 
This is the first part of the result.

	 2. 	Multiply the second digit with itself and then with twice 
the second digit multiply the digits to the left of it and add 
both. This is the second part of the result and continue this.

Now write all these results in the order one below the other 
so that in the 100th place (sthāna) of the previous result the first 
digit of the successive result is written, when all these are added 
we get the required square. 

The formula is,
(f + e + d + c + b + a)2 = a2 + 2a(f + e + d + c + b)

			         + b2 + 2b(f + e + d + c) 
			         + c2 + 2c(f + e + d)
			         + d2 + 2d(f + e)
			         + e2 + 2fe 
			         + f2

The example given by Bapu Deva Shastri is as follows:	
  Find the square of 547913.

		  547913	
		  ———
	         3287469     1         First part
	       109581         2         Second part
	     98541             3
	   7609                 4
	 416                     5
            25                          6
—————————–
              300208655569

The ciphers are omitted for simplicity.
This is the square value. The calculations for 1 2 3 4 5 6 are 

as follows:

1. 32 + 2 × 3 × (54791) × 10 = 9 + 6 × (54791) × 10 = 9 + 3287460  
			            = 3287469.
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2. 12 × 102 + 2 × 1 × (5479) × 103 = 100 + 10958 × 103. = 10958100.

3. 92 × 104 + 2 × 9 × (547) × 105 = 810000 + 18 × (547) × 105		
			                = 810000 + 984600000 = 985410000.

4. 72 × 106 + 2 × 7 × (54) × 107 = 49000000 + 14 × 540000000

			               = 49000000 + 7560000000 = 7609000000.

5. 42 × 108 + 2 × 4 × (5) × 109 = 16 × 108 + 40 × 109 = (16 + 400) × 108

			            = 41600000000.

6. 52 × 1010		                  = 250000000000.

The same can also be done (proved) from last digit (antya).

Finding Square Root of a Number 
The sūtra given is:

R;ÙkQ~okUR;kf}"kekr~ Ñfra f}xq.k;sUewya les r¼`rs
R;ÙkQ~ok yC/Ñfra rnk|fo"kekYyC/a f}fu?ua U;lsr~A
iaÙkQ~;k iafÙkQârs lesUR;fo"kekÙ;DRokIrox± iQyEk~
iaÙkQ~;ka rfí~oxq.ka U;lsfnfr eqgq% iaÙkQsnZya L;kRine~AA 

tyāktvāntyādviṣamāt kr̥tiṁ dviguṇayenmūlaṁ same taddhr̥te 
tyaktvā labdhakr̥tiṁ tadādyaviṣamāllabthaṁ dvinighnaṁ 
								        nyasetA
paṅktyā paṅktihr̥te samentyaviṣamāttyaktvāptavargaṁ phalam
paṅktyāṁ taddviguṇaṁ nyasediti muhuḥ paṅkterdalaṁ 
syātpadamAA 				               – Līlāvatī XXIII

Here according to Bapu Deva Shastri viṣama consisting of “two” 
digits is brought down at every stage, for calculation of square 
root and not one digit as in the ancient method and his working is 
similar to the one which we are using now (Līlāvatī (BDS), pp. 8-9).

Finding Cube Root of a Number
The sūtras given are:

vk|a ?kuLFkkueFkk?kus }s iquLrFkkUR;kn~?kurks fo'kksè; A
?kua i`FkDLFka ineL; ÑR;k f=k?U;k rnk|a foHktsr~ iQya rq AA
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iaÙkQ~;ka U;lsÙkRÑfreUR;fu?uha f=k?uha R;tsÙkRçFkekRiQyL; A
?kua rnk|kr~ ?kuewyesoa iafÙkQa Hkosnsoer% iqu'p AA

ādhyṁ ghanasthānamathāghane dve punastathāntyādghanato  
							                viśodhyaA

ghanaṁ pr̥thaksthaṁ padamasya kr̥tyā trighnyā tadādyaṁ 
vibhajet phalaṁ tu AA 		        – Līlāvatī XXIX-XXX

paṅktyāṁ nyasettatkr̥timantyanighnīṁ trighnīṁ tyajettat  
					           prathamātphalasyaA
ghanaṁ tadādyāt ghanamūlamevaṁ paṅktiṁ bhavedevamataḥ  
						              punaśca AA

Here, according to Bapu Deva Shastri ghana consisting of “three 
digits” is brought down at every stage, for calculation of cube 
root and not one digit for calculation of cube root and his working 
is simpler than the one given by others and similar to the one 
which we are doing now (Līlāvatī (BDS), pp. 10-11).

Below we work out the cube root of 817400375 as given by 
Bapu Deva Shastri:
					                  घनः	       घनमूलः

					                    ...          
					                  817400375        (935

ifƒ%	 	                           			                729a3

(paniktiḥ)				                 ———

2733a+b                       viw.kZHkktd%                   243003a2   	  88400 
                         (apūrṇabhājaka)	

    62b	                          �ाेपः                           819 b × (3a + b)   
	                       (kṣepaḥ)                            

27953a + b + 2b + c    iw.kZHkktdः                     25119 3a2 + b × (3a + b)       75357
 	                    (pūrṇabhājakaḥ)	    9(b2)	                        ———	

                 viw.kZHkktdः 2594700b  (3a + b) + 3a2                  13043375
                                     (apūrṇabhājakaḥ)         + b(3a + b) + b2                    

		       �ाेपः   	       13975 c [(3a + b) + 2b + c]             
		       (kṣepaḥ)                               ———
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                 iw.kZHkktdः           2608675. b2 + b(3a + b) +    
                   (pūrṇabhājakaḥ)  3a2 + b(3a + b) + b2 + c[(3a + b) + 2b + c]	   
						                13043375 

The calculations of ¬Áñ (paṅktiḥ)%] viw.kZHkktd%     (apūrṇabhājakaḥ) 
iw.kZHkktd%  (pūrṇabhājakaḥ)] {ksi% (kṣepaḥ) are explained in detail by 
Bapu Deva Shastri as follows:

THE PRACTICAL PART

In the problem detailed above, the first digit in the quotient is 9 = a. 
Write 3a = 27 in ¬Áñ% (paṅktiḥ), write 3a2 ×100 = 24300 as viw.kZHkktd% 
(apūrṇabhājakaḥ). The next possible digit in quotient is 3 and so 
we write 3 in quotient as well as ¬Áñ% (paṅktiḥ) in proper place. 
Now multiply ¬Áñ% (paṅktiḥ) with the recent digit in root and write 
this as {ksi% (kṣepaḥ). Then the iw.kZHkktd% (pūrṇabhājakaḥ) is sum of  
viw.kZHkktd% (apūrṇabhājakaḥ) and {ksi% (kṣepaḥ).

Then multiply the iw.k ZHkktd% (pūrṇabhājakaḥ) with recent 
digit in root and subtract it from dividend and then the next 
ghana is brought down. Then the square of recent digit in 
root is written below iw.kZHkktd% (pūrṇabhājakaḥ) and the next  
viw.kZHkktd% (apūrṇabhājakaḥ) is calculated as sum of previous 
iw.kZHkktd% (pūrṇabhājakaḥ), {ksi% (kṣepaḥ) and the square now written. 
Also write 2 × recent digit in root in ¬Áñ% (paṅktiḥ) in proper place 
and add. And now the procedure is repeated.

THE THEORY PART

	    (a+b)3 = a3 + 3a2b + 3ab2 + b3

		  = a3 + b(3a2 + 3ab + b2)
		  = a3 + b{3a2 + b(3a + b)} 			               (1)
Similarly,
	 (a + b + c)3 = (a + b)3 + c{3(a + b)2 + c (3(a + b) + c)}           (2)
	 {3(a + b)2 + c(3(a + b) + c)} = 3a2 + 3b2 + 6ab + 3ac + 3bc + c2   (3)
Again,
	 b(3a + b) + 3a2 + b(3a + b) + b2 + c[(3a + b) + 2b + c]
	 = 3ab + b2 + 3a2 + 3ab + b2 + b2 + 3ac + 3bc + 2bc 	            (4)
	 (3) = (4).
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So,
	 {3(a + b)2 + c(3(a + b) + c)} 
	 = b(3a + b) + 3a2 + b(3a + b) + b2 + c[(3a + b) + 2b + c].

Finding the Unknown Quantity 
(Subject to Certain Conditions) 
The sūtra given is:

mís'kdkykiofn"Vjkf'k% {kq..kksârksa'kkS jfgrks ;qrksok A
b"Vkgra n`"Veusu HkÙkQa jkf'kHkZosr~ çksÙkQferh"VdeZ AA 
uddeśakālāpavadiṣṭarāśiḥ kṣuṇṇohr̥toṁśau rahito yutovāA
iṣṭāhataṁ dr̥ṣṭamanena bhaktaṁ rāśirbhavet proktamitīṣṭakarmaAA
		  					        – Līlāvatī LII

This method is also known as supposition operation with an 
assumed number. It is the rule of false position, supposition and 
trial and error. To discover the unknown number, begin with any 
convenient number. Then according to the conditions given in 
the problem, carry on the operations such as multiplication and 
division. [Then the given quantity, being multiplied by the assumed 
number and divided by that (which has been found), yields the 
number sought. This is called the process of supposition.]

It is really very interesting to note how problems on avyakta 
gaṇita (algebra) were solved with vyakta gaṇita (arithmetic) with 
this method of supposition. Normally, these types of problems are 
solved by assuming the unknown to be one and then proceeding 
with the other operations and from n`"V (dr̥ṣṭa) we find b"V (iṣṭa). 

Here Bapu Deva Shastri uses =kSjkf'kda (trairāśikaṁ) and b"V 
(iṣṭa) and gives two examples to solve one unknown and two 
unknowns. The method according to Bapu Deva Shastri can be 
better explained, in the following manner:

If we have to find an unknown value, say U, with a given 
condition:

Suppose its value to be s1. Apply the condition. It may not satisfy 
the condition. Find the difference d1. Suppose its value to be s2. 

Apply the condition. It may not satisfy the condition. Find the 
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difference d2, now find the difference between d1 and d2.  Also, 
the difference between s1d2 and s2d1. Now (s1d2 ~ s2d1)/(d1~ d2) 
gives the unknown.	       		  – Līlāvatī (BDS), pp. 19-20

This principle has been used in the following two examples by 
Bapu Deva Shastri.

Example 1: Finding the price of a horse

,dL; :if=k'krh "kM'ok v'ok n'kkU;L;rq rqY;ewY;k% A
½.ka rFkk :i'kra p rL; rkS rqY;foÙkkS p fde'oewY;e~ AA

;nk| foÙkL; nya f};qÙkQe~ rÙkqY;foÙkks ;fnokf}rh;% A
vk|ks /usu f=kxq.kksU;rks ok i`Fkd~ i`FkÄ~es on okft ewY;e~ AA

ekasya rūpatriśati ṣaḍaśvā aśvā daśānyasyatu tulyamūlyāḥA
r̥ṇaṁ tathā rūpaśataṁ ca tasya tau tulyavittau ca
							         śvamūlyamAA

yadādya vittasya dalaṁ dviyuktam tattulyavitto  
							       adivādvitīyaḥA
ādyo dhanena triguṇonyato vā pr̥thak pr̥thaṅme vada vāji  
							               mūlyamAA

						     – Līlāvatī (BDS), p. 20

There are totally three problems given in the example and will be 
considered one after another.

In all these problems, we assume only one value.
Problem (a): Condition given in first two lines. Two persons have 
6 horses and 10 horses each. The first person has Rs. 300 and the 
second person has a debt of Rs. 100 but the total value of horses 
and money for both persons are same.
We will assume 50 to be the price of horse.
Then first person has 50 × 6 + 300 = 600.		                (1)
Second person has 50 × 10 – 100 = 400.			                 (2)
(1) and (2) are not equal, difference is + 200
We will assume 80 to be the price of horse.
Then first person has 80 × 6 + 300 = 780.		                (3)
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Second person has 80 × 10 – 100 = 700.			                (4)
(3) and (4) are not equal, difference is + 80.
Assuming 50 the difference is + 200.
Assuming 80 the difference is + 80.
We multiply each difference with the other supposition and get 
their difference
I.e. 200 × 80 − 80 × 50 = 16000 − 4000 = 12000.
Difference between actual differences 200 − 80 = 120.
Hence the value of a horse is 12000/120 = 100.
Problem (b): Here the conditions are as follows:
Half the money value of the first added with 2 is equal to the 
second person’s money value.
Proceeding as above we get the value of a horse: 36.
Problem (c): Here the conditions are as follows:
The money value of the first is equal to three times money value 
of the second person.
Proceeding as above we get the value of a horse: 25.

Next, we see another example given by Bapu Deva Shastri, 
finding two values given two conditions.

Example 2

,dks czohfr ee nsfg 'kra /usu RoÙkks Hkokfe fg l•s f}xq.kLrrks¿U;% A
czwrss n'kkiZ;fl psUee"kM~xq.kks¿ge~ RoÙkLr;ksoZn /u ee fda çek.ks AA

eko bravīti mama dehi śataṁ dhanena tvatto bhavāmi hi sakhe
dviguṇastato ’ nyaḥ A

brūte daśārpayasi eenmamaṣaḍguṇo ’ham tvattastyorvada
dhana mama kiṁ pramāṇeAA

						      – Līlāvatī (BDS), p. 20

Two friends are having two different amounts.
Condition 1: The first person says, “if you give me Rs. 100, then the 
amount in my hand will be twice as much as you have”. 
Condition 2: The second person says, “if you give me Rs. 10, then 
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the amount in my hand will be six times as much as you have”. 
Find their amounts.

We will do this problem using supposition in two stages.

• Stage 1
Part A – Fix the first amount be 20. (First amount >10) now fixed.

We will find the second amount satisfying the first condition:

(a) Assuming the second amount be 110. (Second amount > 100) 	
	     difference is 100.

(b) Assuming the second amount be 120. (Second amount > 100 	
     difference is 80.

And get the money with the second person as 160.

Hence (20, 160) is one set of value satisfying the first condition.

Part B – Fix the first amount be 100. (First amount >10) now fixed.

We will find the second amount satisfying the first condition.

(a) Assuming the second amount be 150. (Second amount > 100) 	
	     difference is 100.

(b) Assuming the second amount be 180. (Second amount > 100) 	
     difference is 40.

And get the money with the second person less as 200.

Hence (100, 200) is the second set of value satisfying the first 
condition.

• Stage 2
We will now find the set satisfying both conditions.

Assume the first set satisfying the first and second conditions to 
be (20, 160).

Now we will apply the second condition.

The difference is 100.

Assume the second set satisfying the first and second conditions 
to be (100, 200).
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Now we will apply the second condition.

The difference is 330.

Assuming 20 for the first person, the difference is 110.

Assuming 100 for the first person, the difference is 330.

Hence the money with the first person is 40.

Now, to find the money with the second person:

Assuming 160 for the second person, the difference is 110 (as above).

Assuming 200 for the first person, the difference is 330 (as above).

Hence the money with the second person: 74800/440 = 170.

Money with the first person = 40.

Money with the second person = 170.

Square Transition (Vargakarma) 
The sūtras given are: 

b"VÑfrj"Vxqf.krk O;sdk nfyrk foHkkftrs"Vsu A
,d% L;knL;ÑfrnZfyrk lSdkijks jkf'k% AA 
:ia f}xq.ks"Vâra ls"Va çFkeks¿Fkokijks :iEk~ A
Ñfr;qfrfo;qrh O;sds oxkZS L;krka ;;ks jk';ks% AA

iṣṭakr̥tiraṣṭaguṇītā vyekā dalitā vibhājiteṣṭena A
ekaḥ syādasyakr̥tirdalitā saikāparo rāśiḥ AA
rūpaṁ dviguṇeṣṭahr̥taṁ seṣṭaṁ prathamo 'thavāparo rūpam A
kr̥tiyutiviyuti vyeke vargau syātaṁ yayo rāśyoḥ AA
					                – Līlāvatī  LXV-VI

A certain problem relating to squares is propounded here. 
Here we see an indeterminate problem that admits innumerable 

solutions. We find two rāśis R1 and R2 such that R2
2 + R1

2 − 1 and 
R2 2 − R1

2 − 1 are perfect squares.
Given: R1 = b = (8t2 − 1)/2t, and R2 = b2/2 + 1 are the two rāśis. 

To prove R2
2 + R1

2 − 1 and R2
2 − R1

2 − 1 are perfect squares where 
t is the iṣṭa.
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The miifÙk (upapatti) given by Bapu Deva Shastri is as follows 
(Līlāvatī (BDS), p. 22):

The substitution used is a = b2/2. 			               (A)
Suppose the first rāśi R1 = b; second rāśi R2 = a + 1.	               (B)

Their squares are b2 and a2 + 2a + 1.

Choose 2a = b2 by (A).

Then we have:

R2
2 − R1

2 − 1 = a2 + 2a + 1 − b2 − 1 = a2 + 2a − b2 = a2, a perfect square 
by (A). 

Hence the first result is proved.

Now substituting (A) in R2 we get R2= b2/2 + 1:

R2
2 + R1

2 − 1 = (b2/2 + 1) 2 + b2 − 1 = b4/4 + b2 + 1 + b2 − 1 = b4/4 + 2b2 

= b2(b2/4 + 2).

This will be a perfect square provided (b2/4 + 2) is a perfect square.

Now putting b = (8t2 − 1)/2t.				     	   (1)

We get (b2/4 + 2) = (8t2 − 1) 2/16t2 + 2 = (8t2 + 1) 2/16t2 which is a 
perfect square.

From (A) we have a = b2/2.

So R1 = b = (8t2 − 1)/2t and R2 = a + 1 = b2/2 + 1 are the two rāśis 
which satisfy the conditions that R2

2 − R1
2 − 1, R2

2 + R1
2 − 1 are squares.

Given: 1/(2x) + x and 1 are the two rāśis.
The miifÙk (upapatti) given by Bapu Deva Shastri is as follows: 

(Līlāvatī (BDS), p. 22):

Suppose the first rāśi R1 = 1/(2t) + t =; the second rāśi R2 = 1.       (B)

Then

R2
2 − R1

2 − 1 = (1/(2t) − t) 2

R2
2 + R1

2 − 1 = (1/(2t) + t) 2 and both are squares.

As the two preceding solutions give fractional solutions, the next 
sūtra by ācārya is to find answers in whole numbers:
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b"VL; oxZoxkZs ?ku'prko"Vlaxq.kkS çFke% A
lSdks jk'kh L;krkesoa O;ÙkQs¿Fkok¿O;ÙkQs AA

iṣṭasya vargavargo ghanaścatāvṣṭasṁguṇau prathamaḥ A
saiko rāśī syātāmevaṁ vyakte ’thavā vyakte AA
					     – Līlāvatī LXVIII

Given: 8x3 and 8x4 + 1 are the two rāśis.
The miifÙk (upapatti) given by Bapu Deva Shastri is as follows

(Līlāvatī (BDS), p. 23):
The substitutions used are 2b = n2, a2 = 2bn, n = 4x2

Suppose the first rāśi R1 = a; the second rāśi R2 = b + 1. 	             (B)
Their squares are a2 and b2 + 2b + 1.
Then we have
R2

2 − R1
2 − 1 = b2 + 2b + 1 − a2 − 1 = b2 + 2b − a2. 

R2
2 + R1

2 − 1 = b2 + 2b + a2. 
The above two must be perfect squares.
So, we put 2b = n2, a2 = 2bn which make the above two perfect 
squares.
Thus a2 = 2bn = n3. Now put n = 4x2 

Then a2 = 64 x6,
The first rāśi R1= a = 8x3.
In the same way b = n2/2 = 8x4.

The second rāśi R2 = b + 1 = 8x4 + 1.
Next Bapu Deva Shastri refutes that when iṣṭa < 2 or iṣṭa < 1/2 

the sūtras quoted by Bālakr̥ṣṇa Daivajña and Lakṣmīdāsa, viyuti 
pakṣe does not hold (Līlāvatī (BDS), p. 23).

The first sūtra by Bālakṛṣṇa is: 

b"V% çFkeks jkf'kfuZtk/Zfugr% l ,okU;% A
vu;ks% Ñfr;qfrfo;qrh :i;qrs ewyns L;krke~ AA

iṣṭaḥ prathamo rāśirnijārdhanihataḥ sa evānyaḥ A
anayoḥ kr̥tiyutiviyutī rūpayute mūlade syātām AA
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The first rāśi = x.
The second rāśi = x2/2.
The first sum to be calculated is
x2 + (x2/2) 2 + 1 = (x4 + 4x2 + 4)/4 is perfect square of (x2 + 2)/2 
always.
The second one is 
x2 diff (x2/2) 2 + 1 = (x4 − 4x2 + 4)/4 square of (x2 − 2)/2 when x4 > 4x2,
i.e. when x4/4x2 > 1 or when x4/4x2 = 1,
i.e. when x2/4 > 1 or when x2/4 = 1,
i.e. when x/2 > 1 or when x/2 = 1,
i.e. when x > 2 or when x = 2.
Hence, when iṣṭa < 2, the sūtra quoted by Bālakr̥ṣṇa viyuti pakṣe 
does not hold.

The second sūtra by Lakṣmīdāsa is:

prqxZq.ks"Vek|e% l f}?uks¿Hkh"Vlaxq.kks¿ijs A
vu;ks% Ñfr;qfrfo;qrh :i;qrs ewyns L;krke~ AA

caturguṇeṣṭamādyamaḥ sa dvighno ’bhīṣṭasaṁguṇo ’pare A
anayoḥ kr̥tiyutiviyutī rūpayute mulade syātām AA

This one is the same as the above for the two rāśis are 4x and 8x2.
Same as 4x and (4x) 2/2.
Same form as x and x2/2.
Hence, when 4x < 2 or x (iṣṭa) < 1/2, the sūtra quoted by Lakṣmīdāsa 
mithaviyuti pakṣe does not hold.

In the chapter on Mensuration, the sūtra to construct a right-
angled triangle with given two quantities is as follows (Līlāvatī  CLIII):

b"V;ksjkgfrf}Z?uh dksfVoZxkZUrja Hkqt%A
Ñfr;ksxLr;ksjsoa d.kZ'pkdj.khxr% AA
iṣṭayorāhatirdvighnī koṭirvargāntaraṁ bhujaḥ A
kr̥tiyogastayorevaṁ karṇaścākaraṇīgataḥ AA

If x, y are taken as two iṣṭas, 
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x2 − y2, 2xy, x2 + y2 are the sides of right-angled triangle.
If x, y (1, 2) are taken as two iṣṭas, 

sides of triangle are x2 − y2, 2xy, i.e. 3, 4. Hyp2 is 32 + 42 is 52, karṇa = 5.
Bapu Deva Shastri further extends this to find two perfect 

squares of the form x2 + y2 − 1 and x2 − y2 + 1 (Līlāvatī (BDS), p. 24).

b"V;ksjkgfrf}Z?uhR;k|kpk;kZsÙkQ ekxZr% A
dksfVnks% Jqr;% lkè;kLr=kdksfVHkqtkgfr% AA

f}fu?uhijlaKk L;kfn"VoxZijk[;;ks% A
;ksxkr~ rnUrjs.kkfiresdks jkf'kHkZosÙkFkk AA

rsukUrjs.k âf}?us"V?u% d.kkZs¿ijks Hkosr~ A
;RÑR;ksfoZ;qfr% lSdk;qfr'pkSdksfurk Ñfr% AA

dksfVnksfoZojkfn"Vd.kZ;ksjUrja ;Fkk A
ukf/da L;kr~ rFkk çkK b"Ve=k çdYi;sr~ AA

iṣṭayorāhatirdvighnītyādyācāryokta mārgataḥ A
koṭidoḥ śrutayaḥ sādhyāstatrakoṭibhujāhatiḥ AA

dvinighnīparasaṁjñā syādiṣṭavargaparākhyayoḥ A
yogāt tadantareṇāpitameko rāśirbhavettathā AA

tenāntareṇa hr̥dvighneṣṭaghnaḥ karṇo 'paro bhavet A
yatkr̥tyorviyutiḥ saikāyutiścaikonitā kr̥tiḥ AA

koṭidorvivarādiṣṭakarṇayorantaraṁ yathā A
nādhikaṁ syāt tathā prājña iṣṭamatra prakalpayet AA

Procedure:  
Stage 1: With two iṣṭas get the karṇa and right triangle, para = koṭi 
× bhuja × 2.
Stage 2: Now take one new iṣṭa where (dksfVn% foojkr~ b"Vd.kZ;ksjUrj 
(koṭidaḥ vivarāt iṣṭakarṇayorantaraṁ) (difference between b"V (iṣṭa) 
and d.kZ (karṇa) ;Fkk u vf/da L;kRk~ (yathā na adhikaṁ sayat)A
R1 = the first rāśi = iṣṭavarga + para/iṣṭavarga − para.
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R2 = the second rāśi = 2 × iṣṭa × karṇa/iṣṭavarga − para.
Now R1 and R2 satisfy the condition x2 + y2 − 1 and x2 − y2 + 1 are 
both perfect squares.

Example Problem (1) (Līlāvatī (BDS), p. 24):
1, 2 taken as two iṣṭa sides of triangle are x2 − y2, 2xy, i.e. 3, 4
Hyp2 is 32 + 42 is 52.
Karṇa = 5.
Para = koṭi × bhuja × 2 = 4 × 3 × 2 = 24.
We will start from 4.
Take iṣṭa = 4, varga = 16, add para = 24 + 16 = 40. 
The difference between iṣṭavarga and para = 8.
The first rāśi = 40/8 = 5. 
The second rāśi =    f}?u% d.kZ% b"V%@vUrjEk~ (dvighnaḥ karṇaḥ iṣṭaḥ/
antaram) = 2 × 5 × 4/5 = 40/8 = 5.
Now the two rāśis are 5, 5 with x2 + y2 − 1 and x2 − y2 + 1 as 49, 1 
whose square roots are 7, 1.
Similarly, when the iṣṭa = 5, the two rāśis 49, 50 with x2 + y2 − 1 and 
x2 − y2 + 1 as 4900, 100 whose square roots are 70, 10.

Example Problem (2) (Līlāvatī (BDS), p .24):
2, 3 taken as two iṣṭa sides of triangle are x2 − y2, 2xy, i.e. 5, 12
Hyp2 is x2 + y2 is 169.
Karṇa = 13.
Para = koṭi × bhuja × 2 = 12 × 5 × 2 = 120.
We will start from 6.
Take iṣṭa = 6, varga = 36, add para = 36 + 120 = 156.

Difference between iṣṭavarga and para = 84.
The first rāśi = 156/84 = 13/7.
The second rāśi = f}?u% d.kZ% b"V%@vUrjEk~ (dvighnaḥ karṇaḥ iṣṭaḥ/
antaram) = 2 × 13 × 6/84 = 13/7.
Now the two rāśis are 13/7, 13/7 with (x2 + y2) − 1 and (x2 − y2) + 
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1 as 289/49, 1. These are squares as 289/49, 1 whose square roots 
are 17/9, 1.

Similarly, it can be proved when iṣṭa = 7, 8, 9 and 10.
There is yet another sūtra by Bapu Deva Shastri (Līlāvatī (BDS), 
p. 24): 
Two rāśis R1 and R2 are first squared. We find conditions on R1, R2 
such that R2

2 + R1
2 − 1 and R2

2 − R1
2 + 1 are perfect squares. 

b"VL; oxZoxZ% lSd'ps"Vkgr% çFkekjkf'k%A
b"VÑfrÑfrf}Z?uh :ifo;qÙkQk Hkosnij% AA

vu;ksoZxZfo;ksx% lSdks oxZSD;esdghua p A
oxZ% L;kfn"Vo'kknsoa L;qjfHkpjk'k;ks cgq/k AA

iṣṭasya vargavargaḥ saikaśceṣṭāhaṭaḥ prathamārāśiḥ A
iṣṭakr̥tikr̥tirdvighnī rūpaviyuktā bhavedaparaḥ AA

anayorvargaviyogaḥ saiko vargaikyamekahīnaṁ ca A
vargaḥ syādiṣṭavaśādevaṁ syurabhicarāśayo bahudhā AA

Procedure: 
The iṣṭa = x.
R1 = the first rāśi = (x4 + 1) x; R2 = the second rāśi = (2x4 − 1).
Now R1 and R2 satisfy the condition x2 + y2 − 1 and x2 − y2 + 1 are 
both perfect squares.

Example 
The iṣṭa = 2; R1 = the first rāśi = (24 + 1) 2 = 34; R2 = the second rāśi 
= (2 × 24 − 1) = 31.
342 + 312 − 1 and 342 − 312 + 1 are both perfect squares. Square 
roots   are 46, 14.
iṣṭa =3; R1 = the first rāśi = (34 + 1) 3 = 246; R2 = the second rāśis = 
(2 × 34 − 1) = 161.
2462 + 1612 − 1 and 2462 − 1612 + 1 are both perfect squares. Square 
roots are 294, 186.
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Conclusion
Bapu Deva Shastri, besides being the Professor of Astronomy in 
Benares Sanskrit College, held many honorary posts such as the 
member of the Royal Asiatic Society of Great Britain and Ireland, 
member of the Asiatic Society of Bengal and fellow of University 
of Calcutta. He has made certain value additions to the topics of 
division, square, supposition, pulverization, progression, etc. for 
the benefit of better understanding of the students. This paper 
throws light on some of his techniques and examples as detailed 
in the book mentioned above. Thus, his contributions to ancient 
mathematics are praiseworthy.
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Parikarmacatuṣṭaya and 
Pañcaviṁśatikā 

A Study

V.M. Umamahesh

Introduction

THE HISTORY OF PARIKARMA THROUGH THE AGES 

cgqfHkfoZçykiS% fda =kSyksD;s lpjkpjsA
;fRdf×k~p}LrqrRlo± xf.krsu fouk ufgAA

Whatever there is in all the three worlds, which are possessed of 
moving and non-moving beings – all that indeed cannot exist as 
apart from gaṇita. What is the saying of good in vain?
					        – Rangacharya 1912: 3

The ancient Indian society was familiar with the all-pervasiveness 
of gaṇita that can be traced to Vedic period.  Śulbasūtras give rules 
for constructing vedīs (sacrificial altars) and moves on to surds, etc.

Arithmetic and algebra are the two major fields in Indian 
mathematics. In arithmetic, there are various operations and out of 
which eight operations have been identified as fundamental. They 
are addition, subtraction, multiplication, division, square, square-
root, cube and cube-root. A brief history of these fundamental 
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operations (parikarmas) are presented here from the ancient up to 
medieval times.

Bhāskara I in his commentary on the Āryabhaṭīy​a states:

All arithmetical operations resolve into two categories though 
usually considered to be four.

vFk vkpk;kZ;ZHkVeq•kjfoUnfoful`rainkFkZ=k;axf.kra] dkyfØ;k] xksy bfr 
;nsrn~xf.kra rn~ f}/a prq"kZq lfUuo"VEkA o`f¼áZip;'psfr f}fo/e~A o`f¼% 
la;ksx] vip;ksÞykl%A ,rkH;ka HksnkH;ke'ks"kxf.kra O;kIre~A
la;ksxHksnk xq.kukxrkfu 'kq¼s'p Hkkxks xrewyeqÙkQe~ A
O;kIr leh{;ksip;{k;kH;ka fo|kfnna };kedeso 'kkL=kEk~AA

That all mathematical operations are variations of the two 
fundamental operations of addition and subtraction was 
recognized by the Indian mathematicians from early times. 
The two main categories are increase and decrease. Addition 
is increase and subtraction is decrease. These two varieties of 
operations permeate the whole of mathematics (gaṇita). So, 
previous teachers have said: “Multiplication and evolution 
are particular kinds of addition; and division and involution 
of subtraction. Indeed, every mathematical operation will be 
recognized to consist of increase and decrease.” Hence the whole 
of this science should be known as consisting truly of these two 
only.			               – Datta and Singh 1962: 130

PĀṬĪGAṆITA

Arithmetic is referred as pāṭīgaṇita, dhūli-karma or vyakta gaṇita. 
Algebra is referred as bījagaṇita or avyakta gaṇita.

The word pāṭīgaṇita is a compound formed from the words pāṭī, 
meaning “board” and gaṇita meaning “science of calculation”; 
hence it means the science of calculation which requires the use 
of writing material (the board). The carrying out of mathematical 
calculations was sometimes called dhūli-karma (dust work) 
because the figures were written on dust spread on board or 
on the ground. Some later writers have used the term vyakta 
gaṇita (the science of calculation of the “known”) for pāṭīgaṇita 
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to distinguish it from Algebra which was called avyakta gaṇita 
(the science of calculation of the “unknown”). 
						               – Ibid.: 123

Pāṭīgaṇita Works
Initially mathematics was included as a section in the astronomical 
works called Siddhāntas. Āryabhaṭa I (499) started this tradition. 
Later it became a general norm to include a section on mathematics 
in the Siddhānta works. Also, this developed into a separate stream 
over a period. The authors and their works which deal exclusively 
with pāṭīgaṇita are given below:
	 Author not known 	 – Bakṣālī manuscript (seventh century)
	 Śrī​dharācārya 	 – Triśatikā (eighth century)
	 Mahāvīra 	 – Gaṇitasārasaṁgraha (ninth century)
	 Śrīpati 	 – Gaṇitatilaka (eleventh century)
	 Bhāskara II 	 – Līlāvatī (eleventh century)
	 Nārāyaṇa Paṇḍita 	 – Gaṇitakaumudī (fourteenth century)
	 Munīśvara​ 	 – Pāṭīsāra (seventeenth century)

In addition to the above popular works, there are many lesser 
known texts which deal exclusively with pāṭīgaṇita. In this paper, 
two fourteenth-century texts which deal exclusively with arithmetic 
operations are presented. They are the Parikarmacatuṣṭaya and 
Pañcaviṁśatikā both were edited and published by Takao Hayashi.
	 i.	 The Parikarmacatuṣṭaya, an anonymous Sanskrit work 

consists of versified rules and examples for the four 
fundamental arithmetical operations – saṅkalita, vyavakalita, 
pratyutpanna and bhāgahāra. Rules seem to be influenced by 
the Triśatikā but the examples are original. The addition and 
subtraction refer to sum of finite series of natural numbers 
and the difference between two finite series as can be found 
in the Triśatikā. This work contains 58 ślokas along with prose 
parts. All the examples quoted have been provided with 
answers. 
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		  According to the colophon of the manuscript, it was copied 
down for teaching the children of a Moḍha Baniā family. 
From the examples provided and the topics covered, it can 
be inferred that the main objective would have been to cover 
the topics useful for merchants (or would be merchants) for 
their day-to-day commercial transactions.

	 ii.	 Hayashi has edited and translated an another arithmetical 
work called the Pañcaviṁśatikā, based on two manuscripts 
(one from LD Institute, Ahmedabad and the other one 
from Oriental Institute, Baroda). Both the manuscripts 
contain Gujarati commentaries. As the name suggests, the 
original work should have had 25 ślokas. However, both the 
manuscripts contain more than that.

		  The Pañcaviṁśatikā covers the topics of addition, subtraction, 
multiplication, division and other topics such as square root, 
rule of three, areas of square, investments, areas of triangle, 
area of circle, etc.

Addition 

ADDITION IN PAÑCAVIṀŚATIKĀ 

In this work, rule for addition and subtraction has been given:

;rk LFkkude~ vÄ~dkuka ;qfrfoZ;qfrjkfnr%A
•suksuk|% l ,o l u ikrsAA

In this text the term used for addition is yuti and for subtraction 
is viyuti. 

Beginning with the first numeral the sum or difference 
of numerals is made according to the places. That numeral is 
increased or decreased by zero itself. 

Sum of the Series in Pañcaviṁśatikā
In this work, addition, sum of the natural series and arithmetic 
progression are all covered. Sum of the series of natural numbers 
is stated as:

lSdinkgrinnya ,dkfnp;su Hkofr ladfyraA
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f|xqf.kÑrladfyrku~ ewya xPNksof'k"Vle%AA

Half of the product of the first (value) increased by unity and the 
number of terms will be that [sum which is obtained] by increasing 
one by one. Half of the sum of the square of the number of terms 
and first [value is also the sum]. Multiplying half of the first [or 
the first] increased by unity [by other value, one obtains] the 
[same] result.

		   Sn = 1 + 2 + 3 + … + n
		  S n n n n

n �
� � � �( ) ( ) .1

2
1

2
 or 

The author provides another formula wherein:
O;sdin?up;% l|ksUR;a LooD=k;qrkríye~A
eè;a Loinfu?ua rr~ loZLoa tk;rs p;sAA

a = first term (ādhya), d = common difference (caya), n = number of 
terms (pada) of an arithmetic progression. Last term is antya (an), 
middle term is madhya (m) and sum of the series is sarvasva (Sn).

		  an = a + (n − 1) × d,

		  m
a an�
�( )

,
2

		  Sn = nm.

ADDITION IN PARIKARMACATUṢṬAYA 

The anonymous author begins this work with stating that “pair 
of procedural rules for addition, the first fundamental operation, 
is as follows”: 

vknkS :ia ásda :ia pSdksÙkja 'kra xPN%A
vUrnZ'kknz~"VZiQya onfUr lÄ~dfyr ekpk;kZ%AA

First place is unity. Increase is also one up to one hundred. Saṅkalita 
is as per the revered ācārya, fruits seen at the interval of 10.

But it is not an addition but the sum of the first n terms of the 
natural series.

S(n) = 1 + 2 + 3 … + n. 
That is, 
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Saṅkalita is S(n) = 1 + 2 + 3 + ... + n, where n = 10k and k = 1, 2, 
3 … 10

The sum of a series starting with one and the common 
difference equal to one can be found out. But he states the method 
is to find out for the series S(10), S(20), …, S(100). 

;L;sPNsRlÄ~dfyra jkf'ka ra rn~xq.ka çÑR;knkSA
çf{kIre~ fg r=k fg fPNRok/Zsu fg rRiQyea HkofrAA

When one has multiplied the number whose saṅkalita one 
wishes to obtain by that number <same number> and added the 
<product> to the former, by half of the sum half <of the sum> 
the fruit saṅkalita shall be.		            – Hayashi 2007: 43

		  S n n
n �

�2

2
.

Vyavakalita: Subtraction
The terms used for subtraction by various authors are vyutkalita, 
vyutkalana​, śodhana​, viyojana​, viśodhana and viyoga, and āvaśeṣa, śeṣa 
and āvaśeṣaka are the terms used for remainder.

A few authors define normal subtraction stating that according 
to their places (units, tens, etc.) difference is to be found out.

SUBTRACTION IN PAÑCAVIṀŚATIKĀ 

In this work, like in the Triśatikā, vyavakalita refers to the difference 
between the sums of two natural series (v. 3):

ladfyrksRiUu|qEukn~ O;;a R;ÙkQ~ok /ua Hkosr~A
r¼ua O;odfyra eqfufHk% iqjkAA 

Having subtracted the expense (vyaya) from the property 
(dyumna) produced by addition (saṅkalita), there will be property 
(dhana). This property has been called the difference (vyavakalita) 
by the ancient sages.			             – Hayashi 1991: 415

Sn – n = Sn − 1

Ex. n = 10. S10 − 10 = 55 − 10 = 45 = S9.
Saṅkalita (addition) is an elementary function. Hence it was not 
dealt in detail by various astronomical works. But saṅkalita is also 
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referred to summation. The sum of natural numbers and the sum 
of series are described by various texts. 

SUBTRACTION IN PARIKARMACATUṢṬAYA 

In this work, a different “subtraction” is explained (vv. 11-13). the 
sum of a natural series up to a chosen number is deducted from the 
sum of the natural series from 1 to 100 and is defined as saṅkalita 
of that chosen number.

lÄ~dfyrS lÄ~{ksiks O;odfyrs ;}Ùk}r~ {k;ksfi dÙkZO;%A
vUrnZ'k n`"ViQye~ onfUr lÄ~dfyrekpk;Z%AA 

;L;sNs}~;odfyre~ rfLeUusdksÙkj 'kre~ n|kr~A
r=k fg 'krxq.ke~ p nyhÑre~ O;odfyrekgq%AA 

'kroxkZr~ 'krfeJkn~ nfyrkn~ O;odfyrjkf'kekfn"Ve~A
O;iâR; rr% 'ks"kk% iwoZfo/kusu xPN% L;kr~AA 

Addition (sankṣepa) is made in saṅkalita; subtraction (kṣaya), too, 
should be made in vyavakalita. The revered professor calls the 
fruits seen at the interval of ten vyavakalita.

One should add one hundred and one to that (number) whose 
vyavakalita one wishes to obtain. (The sum is) multiplied by one 
hundred decreased by that (number) and halved; they call it 
vyavakalita.

From the square of one hundred increased by one hundred and 
halved, the specified value of vyavakalita is subtracted. From that 
remainder, by means of the previous rule, the step (the number 
of terms) shall be (obtained).		            – Hayashi 2007: 46

Let Vn be the vyavakalita of n. Its definition, 
Vn = S(100) – Sn,
V(10) = S(100) – S(10)
V(10) = 5050 – 55 = 4995.

Multiplication
Out of four fundamental arithmetical operations, multiplication 
has been dealt in detail and various methods of operation have 
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been provided by our sages. To summarize, the methods are: 
	 i.	 Kapāṭasandhi
	 ii.	 Gomūtrikā 
	 iii.	 Khaṇḍa 
		  a.	 Rūpa-vibhāga 
		  b.	 Sthāna-vibhāga
	 iv.	 Bheda​ 
	 v.	 Iṣṭa
	 vi.	 Tatastha
	 vii.	 Special method appearing in the Gaṇitamañjarī (Gelosia or 

Grating method).
The modern method of multiplication has already been in 

practice here. The evolution of the methods is in line with the 
progress in the writing materials. Earlier methods act as building 
blocks on which new methods are invented. 

MULTIPLICATION IN PAÑCAVIṀŚATIKĀ

The Pañcaviṁśatikā enumerates four methods of multiplication. 
They are kapāṭasandhi, gomūtrikā, tatastha and khaṇḍa. As per the 
text, kapāṭasandhi, gomūtrikā and tatastha each is of two kinds and 
khaṇḍa is of three kinds (v. 4). 

f}/k dikVlfU/'p rFkk xksewf=kdk f}/kA
rLFkks f}/k iqu% çksÙkQLrFkk •.Mk f=k/k Le`r%AA

Hayashi opines that: 

Due to laconic expressions of the versified rules and sketchy 
descriptions of the commentaries, there remains much ambiguity 
about the details of the procedures.	         – Hayashi 1991: 417

MULTIPLICATION IN PARIKARMACATUṢṬAYA

This text lists four methods for multiplication (vv. 20-21):

jkf'ka foU;L;ksifj dikVlfU/Øes.k xq.kjk'ks%A
vuqyksefoyksekH;ke~ ekxzkZH;ke~ rkM;sRØe'k%AA 
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rLFk% çR;qRiUu% •.Mks f}fo/% dikVlfU/'p A
dj.kprq"V;esrr~ çR;qRiUus fofufíZ"Ve~ AA

Having put down the number <to be multiplied> above the 
multiplier in the manner of “door junction” (kapāṭa-sandhi), one 
should multiply <the digits> one by one in regular or reverse 
order. 

The multiplication called “standing there” (tatastha), two kinds 
of parts (khaṇḍa) and “door-junction”: these are the quartet 
methods told for multiplication (vv. 20-21).   – Hayashi 2007: 48

The author has followed the four methods told by Śrīdharācārya.
Śrīdharācārya describes kapāṭasandhi as (vv. 5-6ab):

foU;L;k/ks xq.; dikVlfU/Øes.k xq.kjk'ks%A
xq.k;sr~ foyksexR;k¿uqykseekxZs.k ok Øe'k%AA 

mRlk;kZSRlk;Z rr% dikVlfU/HkZosfnna dj.ke~A

Having placed the multiplicand (guṇya) below the multiplier 
(guṇa-rāśi) as in the junction of two doors, multiply successively 
in the inverse or direct order, moving (the multiplier) each time. 
This process is known as kapāṭasandhi.

Tatastha means being there or stationery. Śrīdharācārya explains 
this in his Triśatikā (v. 6cd):

rfLeafLr"Bfr ;Lekr~ çR;qRiUuLrrLrRLFk%AA

When the pratyutpanna is performed by keeping the multiplier 
stationary, the process is called tatastha (multiplication) at the 
same place.

This is of two varities, according to Śrīdhara (Triśatikā v. 7 and 
Pāṭīgaṇita v. 20).

:iLFkkufoHkkxkr~ f}/k HkosR•.MlaKda dj.ke~A
çR;qRiUufo/kus dj.kkU;srkfu pRokfjAA 

The process of multiplication is called khaṇḍa (or khaṇḍa-guṇana, 
“multiplication by parts”) is of two varieties (called rūpa-vibhāga 
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and sthāna-vibhāga), depending on whether the multiplicand 
or multiplier is broken up into two or more parts whose sum 
or product is equal to it, or the digits standing in the different 
notational places (sthāna) of the multiplicand or multiplier are 
taken separately. 			            – Shukla 1959: 13-14

Division (Bhāgahāra)
David Eugene Smith, in his History of Mathematics (1953) states: 

The operation of division was one of the most difficult in 
the ancient logistica, and even in the fifteenth century it was 
commonly looked upon in the commercial training of the Italian 
boy as a hard matter. Pacioli (1494) remarked that “if a man can 
divide well, everything else is easy, for all the rest is involved 
therein”. 					             – Vol. 2: 132

The process of division was considered to be too tedious by the 
European scholars even during fifteenth century, whereas siddhānta 
authors (fifth century) considered division as too elementary to 
be described.

In almost all siddhānta works, methods of division are not 
explained. But division is used in other calculations. But in pāṭī 
works we can find that division methods are explained with 
examples. It is evident from those works that our sages knew the 
modern method of division then.

The common Indian names for division are bhāgahāra, bhājana, 
haraṇa, chedana, etc. All these terms literally mean “to break into 
parts”, i.e. “to divide”, excepting haraṇa which denotes “to take 
away”. This term shows the relation of division to subtraction. The 
dividend is termed bhājya, hārya, etc.; the divisor bhājaka, bhāgahāra 
or simply hara, and the quotient labdhi “what is obtained” or labdha 
(Datta and Singh 1962: 131).

DIVISION IN PAÑCAVIṀŚATIKĀ 

Having put down the divisor below the question (the dividend) 
and divided the question by the divisor, the division should be 
made (part should be taken away) in order. (Thus) the rule division 
has been certainly handed down (to us).
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ç'ukn~ v/ks gja U;L; ç'ua fNRok gjs.k pA
Hkkxks gk;Z% Øeku~ uwua Hkkxkgkjfof/% Le`r%AA 

This gives the well-known method which places the divisor (hara) 
and the divided, which (the latter) is called “the (number in) 
question” (praśna) in our text.

Example 

1 1 3 1 3 5
1 6 2 0     4 2 0       6 0         0
1 2         1 2         1 2       1 2

DIVISON IN PARIKARMACATUṢṬAYA

The Parikarmacatuṣṭaya explains the method of division. The text 
states (vv. 37-38):

jkf'k foU;L;k/ksjkf'kfugkjdks fo'kksè;LrqA 
mifjejk'ks% Øe'k% çfryksee~ Hkkxgkjiq×k~tsuAA

HkkT;e~ gkje~ p }kS rqY;su fg jkf'kuk lf'kU; lnk fPNRokA
'ks"ke~ PNsnfoHkÙkQe~ iQyeFk HkkxkRede~ HkofrAA

When one has put down two numbers (one above the other), 
the lower number, which is the divisor, should be subtracted 
(from the upper number) one by one in reverse order. This is a 
rule for division.

One should always divide the two, the dividend and the divisor, 
by the same number; the quotient (lit. the remainder) (from the 
dividend) divided by (the quotient from) the divisor is a fruit 
(quotient) that has the nature of division.        – Hayashi 2007: 52

The verses are based on Śrīdhara’s Triśatikā (v. 9).

rqys;u laHkos lfr gja foHkkT;a p jkf'kuk fNÙokA
Hkkgs gk;Z% Øe'k% çfryksea Hkkxgkjfof/%AA

An example from the Parikarmacatuṣṭaya for division (v. 42):

v;qr=k;e~ lglzesde~ lf}'kre~ "kV~lIrfrlek;qÙkQe~A
lIrk'khR;k HkÙkQe~ çdFk;esdHkkxk[;e~AA
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U;kl%		  30276/87 = 348

Three ayutas, two hundred and seventy-six <gold pieces> were 
divided by eighty-seven <men>. What is the share for one 
should be told. 

Dividing 3027 by 87 gives the answer of 348. Each will get 348 
gold pieces.

Prime Numbers
An important observation made by Hayashi in this text is the 
occurrence of nine large prime numbers greater than 100 which 
he thinks cannot be a coincidence. 

This high frequency indicates that it cannot be a coincidence. 
The author of the present form of that part, at least, must have 
intentionally used two primes to construct his examples for 
division.				              – Hayashi 2007: 21

Hayashi calls primer number as accheda which has no divisor. 
This is the first-time prime numbers surface in ancient Indian 
mathematical work. It will definitely be a subject matter for a 
separate research. 

Today, prime numbers are used in cryptography for network 
security. Cryptography or cryptology is the practice and study 
of techniques for secure communication in the presence of third 
parties called adversaries.1 

Conclusion
Hayashi (1991: 404) states: 

From the viewpoint of the history of Indian mathematics, 
the importance of our text lies in its historical expansion and 
reformation rather than in its mathematical contents, as it 
throws new light upon history of reformation of other Sanskrit 
mathematical treatises.		         

It applies to both the anonymous works discussed in this paper. 
The title of the work the Pañcaviṁśatikā reminds Śrīdharācārya’s 

	 1	 https://en.wikipedia.org/wiki/Cryptography
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Gaṇitapañcaviṁśati and Tejasiṁha’s Iṣṭāṅgapañcaviṁśatika. Hayashi 
(1991: p. 405) points out:

These two works, devoted for particular topics, may be regarded 
as a kind of monograph, which is hitherto a neglected field of 
study in Indian mathematical literature.

Introducing the students to the simple and clear Pañcaviṁśatikā like 
texts will allay their fears about the complexity of the ancient works 
and will attract more students to a serious study of the ancient 
texts. More such studies based on modern sciences will bring to 
light the marvellous discoveries of our scholars of those times.
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An Appraisal of 
Vākyakaraṇa of Parameśvara

Venketeswara Pai R.

Abstract: Vaṭaśśeri Parameśvaran Nambūdiri popularly known 
as Parameśvara (1380–1460) was a mathematical astronomer 
of the Kerala school of astronomy and mathematics founded 
by Mādhava of Saṅgamagrāma. He has authored several 
works including Dr̥ggaṇita which is composed by revising 
the parameters based on observations. The text Vākyakaraṇa of 
Parameśvara is unique in the sense that it gives algorithm for 
constructing the vākyas. It is mentioned in the second half of the 
first verse of text that:

		 djksfr okD;dj.ka okD;ko;ofl¼;s

The text Vākyakaraṇa is composed for obtaining the vākyas. 

The Vākyakaraṇa contains sixty-six verses and gives algorithm for 
obtaining the vākyas such as gīrṇaśreyādi-vākyas, saṅkrānti-vākyas 
and so on. In this paper having given an overview of the text, we 
would proceed to explain some of the algorithm for obtaining 
the vākyas. We have used the paper manuscript (MS KVS 242) 
for our study. This manuscript was collected from K.V. Sarma 
Research Foundation where it is preserved. Sarma transcribed 
this from the manuscript (MS Triv. C. 133A.) which is preserved 
in Travancore University Manuscripts Library, Trivandrum. In 
this article, we shall have a brief overview of the text.
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Introduction
The Kerala school of Indian astronomy and mathematics, that 
flourished for more than four centuries starting from Mādhava 
(1350 ce) of Saṅgamagrāma, is well known for its contributions to 
mathematics, in particular to the branch that goes by the name of 
mathematical analysis today. Besides making several important 
contributions to mathematical analysis which includes discovering 
the infinite series for sine, cosine and arc tangent functions, as 
well as its fast convergent approximations, the astronomers of 
the Kerala school have also made significant contributions to the 
advancement in astronomy, particularly the planetary theory.

Pioneered by Mādhava (c.1340–1420) and followed by 
illustrious mathematicians and astronomers like Parameśvara, 
Dāmodara, Acyuta and others, the Kerala school extended 
well into the nineteenth century as exemplified in the work 
of Śaṅkaravarman (c.1830). Only a couple of astronomical 
works seem to be extant now. Most of Mādhava’s celebrated 
mathematical discoveries – such as the infinite series for “pi”, 
its fast convergent approximations and so on – are available 
only in the form of citations in later works. Mādhava’s disciple 
Parameśvara (c.1380–1460) is reputed to have carried out detailed 
observations for over fifty years and composed a large number of 
original works and commentaries. Among his works, the Dr̥ggaṇita 
finds its position at the first place. The Vākyakaraṇa is another work 
of Parameśavara in Vākya school of astronomy.

Vākya School of Astronomy
The huge corpus of astronomical literature that has been produced 
in India from the time of Āryabhaṭa (c.499 ce) is generally divided 
into Siddhāntas, Tantras, Karaṇas and Vākyas; in decreasing 
order of the theoretical contents astronomical parameters given 
in Siddhāntic texts are very large. In these texts, complex and 
lengthy computational algorithms are employed in finding the 
planetary longitudes and other astronomical quantities. Hence, 
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evolved a new school of astronomy which is known as the Karaṇa 
school. The epoch is chosen to a closer date and observed planetary 
longitudes documented. Astronomical parameters are made 
smaller in magnitude. The Karaṇa texts describe the simplfied 
algorithms and the mathematical equations are modified for 
computational ease.

The vākya method of finding the true longitude of the sun, 
the moon and the planets (sphuṭagraha) is a brilliantly designed 
simplified version of the methods outlined in the various 
Siddhāntas. As per the Siddhāntas, we first find the mean 
longitudes of the planets and then apply a few saṁskāras. The 
manda-saṁskāra is to be applied in the case of the sun and the 
moon, whereas both the manda-saṁskāra and śīghra-saṁskāra are 
to be applied in the case of the other five planets to get their true 
positions. On the other hand, the vākya method, by making use 
of a few series of vākyas presents a shortcut directly leading to the 
true longitudes of the planets at certain regular intervals, starting 
from a certain instant in the past. We will discuss about this instant, 
which is also closely linked with other notions such as khaṇḍa 
and dhruva, during the course of our discussion. At this stage it 
would suffice to mention that this vākya method provides a simple 
elegant method for computing the true longitudes without having 
to resort to the normal procedure of calculating a whole sequence 
of corrections involving sine functions, etc. which would be quite 
tedious and time consuming. Therefore, the vākya method became 
very popular in south India and even today some pañcāṅgas are 
brought out using the vākya method in the southern states of India 
(Pai et al. 2018).

TEXTS RELATED TO VĀKYA SYSTEM OF ASTRONOMY

The earliest literature on vākyas can be traced back to the time of 
Vararūci and it is known as gīrṇaḥ-śreyādi-vākyas. It is the set of 
248 vākyas which gives the true longitudes of the moon for 248 
consecutive days. Hence, it is also known as candra-vākyas. Since, 
these vākyas have composed by Vararūci, it is popular by the name 
Vararūci-vākyas. These give the longitude of the moon correct 
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up to the minutes. Mādhava gives another set of candra-vākyas 
which is known by the name Mādhava-vākyas. These are accurate 
up to the seconds. The canonical text of the Parahita system, the 
Grahacāranibandha of Haridatta (seventh century), introduces 
vākyas for the manda and śīghra corrections which are referred to 
as the manda-jyās and śīghra-jyās.

The fully developed vākya system is presented in the famous 
karaṇa text of the thirteenth century, the Vākyakaraṇa, which 
gives the method of directly computing the true longitudes of 
the sun, the moon and the planets using vākyas. Manuscripts of 
this work are available in various manuscript libraries of south 
India, especially of Tamil Nadu. Kuppanna Sastri and K.V. 
Sarma estimate that it was composed between 1282 and 1306 ce. 
The author of this work is not known, but probably hailed from 
the Tamil-speaking region of south India. It has a commentary 
called the Laghuprakāśikā by Sundararāja who hailed from Kāñcī 
near Chennai. The work is based on the Mahābhāskarīya and the 
Laghubhāskarīya of Bhāskara I belonging to the Āryabhaṭa school, 
and the Parahita system of Haridatta prevalent in Kerala.

The Vākyakaraṇa and the other works pertaining to the Vākya 
system only present the lists of vākyas and the computational 
procedures for obtaining the longitudes of the planets using 
these vākyas. However, the Vākyakaraṇa of Parameśavara gives 
the rationale behind some of the Vākyas. Thus, it is an important 
text in the vākya school of astronomy.

Vākyakaraṇa of Parameśvara

THE AUTHOR

Parameśvara was one of the reputed mathematician-astronomers 
of the Kerala school who seems to have flourished around the 
beginning of fourteenth century and was a pupil of Mādhava. 
Parameśvara proposed several corrections to the astronomical 
parameters which had been in use since the times of Āryabhaṭa  
based on his eclipse observations. The computational scheme 
based on the revised set of parameters has come to be known as 
the Dr̥k system. The text composed based on the system is called 
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the Dr̥ggaṇita. Parameśvara mentions in his work Dr̥ggaṇita that 
he has composed the same in the Śaka year 1353 (Sarma 1963).

Based on an old manuscript of a Malayalam commentary on 
the Sūrya-Siddhānta preserved in the Oriental Institute, Baroda, 
MS No. 9886, contains in the statements: 

parameśvaran vaṭaśśeri nampūri, nilāyāḥ saumyātīrasthaḥ 
parameśvaraḥ ... asya tanayo dāmodaraḥ, asya śiṣyo nīlakaṇṭhasomayājī, 
... 

Parameśvara was a Nampūri from Vaṭaśśeri [family]. He 
resided on the northern bank of the Nīlā [River]. ... His son was 
Dāmodara. Nīlakaṇṭha Somayājī was his pupil. ...
				            – Sarma and Hariharan 1991

From the first verse of the Vākyakaraṇa, it is evident that the author 
of the work is Parameśvara.

iwT;iknL; #æL; f'k";ks¿;e~ ijes'oj% A
djksfr okD;dj.ka okD;ko;ofl¼;s AA

pūjyapādasya rudrasya śiṣyo ’yam parameśvaraḥ A
karoti vākyakaraṇaṁ vākyāvayavasiddhaye AA

Parameśvara is the student of the venerable Rudra. [The 
work] Vākyakaraṇa is done for obtaining the vākyas.

Here, the teacher “Rudra” is none other than the father of 
Parameśvara. Apart from his father, Mādhava was also the teacher 
of Parameśvara. The second line of the verse states the purpose 
of the text. That is, the rationale for the vākyas or it gives the 
procedure for obtaining the vākyas.

THE TEXT

The manuscript of the text Vākyakaraṇa (MS no. KVS 242) has 15 
folios written in Malayalam script and the language is Sanskrit. 
The Vākyakaraṇa of Parameśvara is a small and an important 
treatise in vākya system. It contains sixty-seven verses in total. 
The beginning verses of the text provide the rationale for gīrṇa-
śreyādivākyas. Later, a couple of verses emphasize the importance 
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of the corrections such as deśāntara and dhruva-saṁskāra. for 
obtaining the true longitude of the moon. A brief content of the 
text is as follows:
	 •	 First verse states the authorship and pupose of the text.
	 •	 Next two and half verses give the rationale for obtaining the 

gīrṇa-śreyādi-candra-vākyas.
	 •	 After this, the author emphasizes on the importance of 

applying deśāntara and aharmāna corrections for obtaining 
the true longitude of the moon in one and a half verses.

	 •	 Seven verses (6-13) explain the procedure for applying the 
aharmāna corrections.

	 •	 Verses 14 to 25 describe the procedure for obtaining dhruva-
saṁskāra-hāraka.

	 •	 Next five verses explain the rationale for obtaining the 
yogyādi-vākyas.

These are set of forty-eight vākyas used to compute the true 
longitude of the sun at any desired instant. The text Karaṇapaddhati 
of Putumana Somayājī gives the rationale for yogyādi-vākyas. For 
more details regarding the yogyādi-vākyas, see Pai et al. (2018) and 
Pai et al. (2015).
	 •	 Rationale for saṅkrānti/saṅkramaṇa-vākyas are explained 	

through verses 32 to 40. The saṅkrānti-vākya is the time interval 
between the meṣa-saṅkrānti, and any saṅkrānti, expressed in 
a vākya.

	 •	 Later verses talk about the need of dhruva-saṁskāra and 
explain it in a different manner. While doing so, it also talks 
about the use of candra-vākyas more efficiently also that the 
error accumulated would be minimum.

It is to be noted that one of the important topics that is 
mentioned in the Vākyakaraṇa of Parameśvara is the dhruva-
saṁskāra-hāraka. It is the divisor in a correction term which is 
known as dhruva-saṁskāra. As name suggests, this is a correction 
term which is to be applied to the dhruva of the moon. This is 
applied in the context where the moon’s true longitude is found 
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using the vākya method. The detailed explanation of the procedure 
for obtaining the true longitude of the moon is found in the 
Vākyakaraṇa of thirteenth century (Pai et al. 2009; Pai et al. 2018; 
Sastri and Sarma 1962). The true longitude obtained here is slightly 
deviated from the actual value. This error arose because of the 
dhruva corresponding to the number of days of cycle of anomalistic 
revolutions. Significance of these anomalistic cycles is that the day 
on which the cycle is completed the moon’s anomaly should be 
zero at the sunrise. In actual, there would be a small finite value 
for longitude of anomaly at the sunrise. The entire algorithm, for 
finding the true longitude, is based on the assumption that at the 
end of each anomalistic cycle, the anomaly would be zero at the 
sunrise. Hence, it is necessary to correct the obtained longitude 
in order to get the accurate value of the true longitude. However, 
the Vākyakaraṇa of thirteenth century does not talk about this 
correction. It is the Vākyakaraṇa of Parameśvara which gives a 
detailed explanation regarding this correction term which goes by 
the name dhruva-saṁskāra. The verses which describe the dhruva-
saṁskāra and their translation are given below:

vkuh; rqÄ~xeè;sUnw okD;kjEHkfnuksn;s A 
r;ksjUrjekuh; rsusUnkseZè;eka xhrEk~AA

pUæksPpHkqfDrjfgrka foHktsYyC/e=k rqA
/zqolaLdkjlaK% L;k¼kjd% Lo.kZlafKr%AA

Having obtained the mean longitudes of the moon and its anomaly 
at the sunrise on the day when the counting of the vākyas starts 
and having obtained their difference, and by that [difference] the 
difference in rates of motion of the moon and its apogee is to be 
divided. This is called as dhruva-saṁskāra-hāraka. This has both 
positive and negative nature.

The above verses give only the “denominator” part of the 
correction term. The whole correction term is to be applied 
negatively to the longitude of the moon when the longitude of 
the apogee is greater.

Otherwise, it has to be applied positively. The following verse 
explain the same.
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rqÄ~xs¿f/ds ½.kk[;% L;k¼?kuk[;f/ds fo/kS A
/zqolaLdkjlaKa rq gkjd/zqoor~ iBsr~ AA

The above verse gives the condition when the correction is 
applied negatively or positively. The next verse explains the entire 
correction term.

	 ¶jRuJs;s¸ fr la'kksè; Loksn;LiQqVHkqfDr r% A
	 gkjds.k foHkT;kIra Lo.k± dq;kZfUu'kkdjs AA

The ratnaśreya (12º02') is to be subtracted from the true rate 
of motion of the Moon. [The result] has to be divided by the 
hāraka. [What is obtained here] has to be applied positively and 
negatively to the longitude of the moon.

The term ratnaśreya gives the numerical value of the rate of motion 
of the moon when it has the slowest motion. The value encoded 
in the term ratnaśreya is 12º 02'. This is the value when the moon 
has the slowest motion. This happens when the moon coincides 
with its apogee. In other words, it is the rate of motion of the moon 
when its anomaly is zero.

Concluding Remarks
From the study, it is clear that the Vākyakaraṇa of Parameśvara 
acts as an appendix to the Vākyakaraṇa of thirteenth century. In 
fact, it fills the gap by introducing the unexplained topics such as 
dhruva-saṁskāra. The purpose stated in the first verse:

djksfr okD;dj.ka okD;ko;ofl¼;s

The text Vākyakaraṇa is composed for obtaining the vākyas, and  
the vākyas has also been served by the text, as the text dedicates 
itself for giving the rationale for vākyas.

References
Pai, Venketeswara R., D.M. Joshi and K. Ramasubramanian, 2009, “The 

Vākya Method of Finding the Moon’s Longitude”, Gaṇita Bhāratī, 
31(1-2): 39-64.

Pai, Venketeswara R., K. Ramasubramanian and M.S. Sriram, 2015, 



|  277An Appraisal of Vākyakaraṇa of Parameśvara

“Rationale for Vākyas Pertaining to the Sun in Karaṇapaddhati”, 
Indian Journal of History of Science, 50(2): 245-58.

Pai, Venketeswara R., K. Ramasubramanian, M.S. Sriram and M.D. 
Srinivas, 2018, “Karaṇapaddhati of Putumana Somayājī: Translation 
with Detailed Mathematical Notes”, HBA 2017; Springer.

Sarma, K.V., 1963, Dr̥ggaṇita of Parameśavara, critical edition, Hoshiarpur: 
Vishveshvara and Vedic Research Institute.

Sarma, K.V. and S. Hariharan, 1991, “Yuktibhāṣā of Jyeṣṭhadeva: A Book 
of Rationale in Indian Mathematics and Astronomy in Analytical 
Appraisal”, Indian Journal of History of Science, 26: 185-207.

Sastri, T.S. Kuppanna and Sarma K.V., 1962, Vākyakaraṇa with the 
Commentary by Sundararāja, Madras: KSRI.





19

Astronomical Observations and the 
Introduction of New Technical Terms 

in the Medieval Period

B.S. Shylaja

Abstract: The science of astronomy developed from observations. 
These aspects are covered in almost every textbook by Indian 
astronomers. However, the finer details on the instruments, 
observational procedures, corrections and errors need to be 
studied systematically. Since the measurable quantities are 
only angles and time, the descriptions are generally brief. In an 
attempt to extract the observational procedures relevant parts 
of the texts are highlighted. This also throws light on some new 
unknown words perhaps coined for the need. This is especially 
true in the texts of late nineteenth century when the usage of 
telescopes was being introduced. A list of such new words will 
be presented and discussed.  

Keywords: Observational astronomy, Indian texts, medieval 
period, new technical terms.  

Introduction 
The observational aspects of Indian astronomers are covered in 
almost every textbook on astronomy. However, the finer details on 
the instruments, observational procedures, corrections and errors 
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are not explicitly mentioned and therefore need to be extracted 
systematically. The measurable quantities are only angles 
and time; moreover, the descriptions are generally brief. For 
example, the introduction of subdivision for aṅgula as vyaṅgula 
is noticeable in many texts. However, the exact definition of the 
fraction and the method to measure are not indicated in any text. 
The fraction of a degree is written down in many texts and the 
method of measurement is not described. The accuracies achieved 
appear to indicate that they are calculated values. However, 
the basic parameters that are measured also are seen to be of 
accuracies of 1 arc minute. Here we will discuss the development 
of observations and procedures by broadly classifying them into 
three categories – the Siddhāntic period (up to about twelfth 
century), medieval period (up to about seventeenth century) and 
the colonial period giving typical examples of observations and 
the associated coinage of new technical terms.

Clues in Siddhāntic Texts  
We look for clues about instruments used for observations in the 
Siddhāntic texts like the Āryabhaṭīya and the Siddhānta Śiromaṇi. 
It is interesting to see that the angles are measured in terms of 
time. The exhaustive work on these instruments (Ohashi 1994) has 
demonstrated the use of various instruments and the accuracies 
achieved. However, the role of later astronomers in improving the 
accuracies does not get highlighted. Here is one example.

It is well known that the declination of the sun changes during 
the year from 23.5º N to 23.5º S. Generally for all calculations this 
value is taken as the same for any given day. However, between the 
sunrise and the sunset there is a small change in the declination. 
This varies throughout the year. Ohashi (1997) has shown that a 
correction to this effect also was measured; and was incorporated 
in all calculations. This was called apacchāyā. This word does not 
find a place in many texts. It is mistaken with avachāyā (penumbra) 
by some. He discusses the various interpretations, such as 
“wrongly placed shadow” and “reduced shadow” which could 
not point to the need for the correction itself.
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The declination of the sun is given by sin δ = sin λ sin ε, where 
δ is the declination, λ, the longitude and ε, the obliquity of the 
rotation axis of the earth.

The increase in λ is about a degree per day. Therefore, from 
sunrise to sunset the change is about ½ degree. For values near λ  
= 0 or 180, the difference of ½ degree would not give appreciable 
difference. However at solstices for an increase in λ  by ½ degree 
can result in a change in the value of δ which is not negligible. 
This has been indicated in the texts Mānasāra and Mayamata (fig. 
19.1). The word apacchāyā was interpreted as a correction for this 
and the logic remained unknown till Ohashi revealed it.

The interpretation of the new technical terms, therefore, 
demands understanding of the observational technique itself. 
This also takes us to the question of what were the observations 
that were carried out and how they were interpreted to derive 
parameters pertaining to the details of orbit.

For example, the parallax of the moon as defined in modern 
terminology is the angle subtended by the moon at the radius of 
the earth. This quantity is essential for all calculations pertaining 
to eclipses. One needs to measure the position of the moon very 
accurately every night. This can be achieved using versed sine 

fig. 19.1: Apacchāyā corrections through the year as provided in 
the Mānasāra and Mayamata; this was interpreted as variation of 
the noon shadow expressed in a modified linear zigzag fashion
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ratio (utkrama jyā) as will be explained later. However, this is not 
mentioned in any text. Based on this measurement, the daily 
motion of the moon is given as 790'35''. The angular size of the 
moon is another quantity measured (16'4½''). 

The quantities derived from these measurements are:
	 a.	 The moon’s daily motion is given as fifteen times the radius 

of earth.
	 b.	 The moon needs 4 ghaṭīs to traverse this distance.
	 c.	 11854¾ yojana is the distance covered.
	 d.	 The earth’s radius is 1581/2 yojanas.

While the observations of the sun and the moon are carried 
out with a gnomon and a simple angle-measuring device, the 
technique for observing the planets is not explicitly discussed 
anywhere.  Here is a hint on observations of planets in a verse in 
Grahalāghava 10.4 (fig. 19.2). It reads:

The reflection of a planet is first seen. The lamba is measured 
from the (horizontal) ground level to the point of reflection. The 
distance between the foot of the lamba and the point of reflection 
is measured in aṅgulas. This is the bhujā. This value multiplied 
by 12 and divided by the elevation of the reflected point. The 
result gives the chāyā in aṅgulas. 		          – Rao 2006

P

fig. 19.2: Method described in the Grahalāghava for getting 
the shadow length of planets
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It is intended that the reflection was from the surface of water. 
A verification of this method for deriving the lunar eclipse timings 
was attempted recently and failed. However, if oil is used instead 
of water, meaningful measurements are obtained (K.G. Geetha, 
personal communication).

Astrolabes: Measures of Coordinates, 
Description of Measurements
Astrolabes were introduced in India around thirteenth century. 
The texts devoted to the construction and use of this instrument 
describe the measurement procedures quite in detail. Mahendra 
Sūri translated the manual of using the astrolabe in thirteenth 
century; this was followed by commentary by Malayendu. 
Subsequently many more texts followed – notably the Siddhāntarāja 
by Nityānanda (Sarma 2018). Here the conversion of time measure 
to angle is eliminated since the angles are measured directly. In 
this context, the procedures of using tabletop instruments also 
emerge. For example, the altitude and azimuth are measured for 
any object. They need to be converted to longitudes and latitudes 
which can be done as formulae. Further conversion of these into 
right ascension and declination are also done the same way. We see 
that the measured quantities like the paramonnatāṁśa (maximum 
altitude) are listed in minutes of arc.  All the other quantities are 
calculated and hence are listed to arcseconds (Venkateswara and 
Shylaja 2016: 1551).

In this context it may be worth mentioning the uniqueness of 
the trigonometric ratio called utkrama-jyā (versed sine). As is well 
known, a counterpart of this does not exist in European texts. But 
its advantages and uses are well known. A new ratio have (half 
versed sine) was defined as 

hav (θ) = (1 − cos θ)/2 = sin2 (θ/2). 		                 (1)

It finds a unique application in navigational measuring devices. If 
one needs to measure distance between two locations on the earth 
based on the (measured) longitude and latitude, the procedure was 
simplified by approximating it to a plane triangle and by applying 
the Pythagoras Theorem. This implies working out square roots 
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which was a tedious procedure 200 years ago. Here, by using the 
versed sine one could get solutions quickly.  

hav s = hav  Δφ + cos φ1 cos φ2 hav Δλ, 		                (2)

where s is the angular separation (which multiplied by radius of 
the earth is the minimum distance on the sea/land) between two 
stations with longitudes and latitudes as λ1, φ1 and λ2, φ2, Δφ is 
the difference in latitudes and Δλ is the difference in longitudes. 

The technique, whose introduction is credited to Sir James 
Inman (1776–1859), was utilized by navigators in the seventeenth 
and eighteenth centuries (Shylaja 2015).  

The application of this straightaway gives the angular 
displacement of the moon or any object in the sky. The general 
formula used

cos s = sin α1 sin α2 + cos δ1 cos δ2 cos Δα		              (3)

can be replaced with

hav s = hav Δδ + cos δ1 cos δ2 hav Δα.		               (4)

This was suggested as a possible alternative for quick 
deductions as recently as in 1984 and it was strongly recommended 
that the method be reintroduced in textbooks (Sinnott 1984: 159).  

Sawāī Jai Singh was a very meticulous observer as depicted 
by the various instruments he constructed at Varanasi, Delhi, 
Jaipur and Ujjain (the one in Mathurā is lost) which we know as 
Jantar Mantar. The instruments in his collection depict a variety 
of techniques. Thus, the simple instruments used for measuring 
altitude and azimuth were converted to the required coordinate 
system by replicating the night sky with grid. He was gifted with 
a telescope and used it for observing the satellites of Jupiter. He 
proceeded with the construction of massive instruments, since 
he believed that the accuracies can be achieved with massive 
structures (Sharma 1995). The tabletop instruments in his collection 
suggest that angular separations were measured fairly accurately.
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Colonial Period
Cintāmaṇi Ragūnāthācārī (CR) was a meticulous observer and was 
quite well acquainted with the European methods of observations 
since he was working at the Madras Observatory. He participated 
in observations of stars, planets and eclipses (Shylaja 2012). He 
is the first Indian credited with the discovery of a variable star. 
He was able to compare the two seemingly different methods 
of planetary position computations (Indian and European). He 
wrote a monograph to educate local astronomers about the need 
for observations of the rare event – the transit of Venus – in 1874. 
He lists the timings of the transit for different places (fig. 19.3). 
Notice that the onset of the event is given in terms of the shadow 
length of the standard length of the gnomon (12''). CR refers to 
many contemporary astronomers and his correspondence with 
them. It should be interesting to search for the works by them. 
Some names are known like Bāpū Deva Śāstrī, other names are 
Śrīnivāsa Dīkṣita, Vaidyanātha Dīkṣita, Tolappar (he composed 
the Śuddhi Vilocana). 

fig. 19.3: The table of timings of the transit of Venus of 1874,  presented in 
terms of the  shadow lengths of 12'' gnomon (last column)
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CR urges people to take a look at the transit of Venus which 
occurred in November 1874. As a precursor to this he suggests 
the occultation of Venus by the moon on 12 November 1874. 
Interestingly, this happened during the day time. Another event 
he recommends is the conjunction of Mars and Jupiter on 16 
December 1874.

In this context he had to coin new terms. For transit, the word 
generally used is samāgama. The title of the book itself is Śukragrasta 
sūrya-grahaṇa, equivalent for the word transit. 

Here are the other words:
Lunar occultation		        candrachādana
Grazing occultation	       sandigdha grahaṇa
Meridian circle		        ardha-cakra
Altazimuth circles		        digunnati-cakra
Equatorial telescopes	       viṣuvadapekṣa
Heliographic chronometer	      sarvato vedhakayantra	
Magnitude 		        jyotiparimāṇa (sthūlatva)
				            jyotiparimāṇa nirṇāyakayantra??
Photographic apparatus	       rūpagrāhaka yantra
chronometer? 
Telescope with coronograph    mukurānvita nalikāyantra
arrangement?
Sidereal clock		        nakṣatra sāvana ghaṭikāyantra
Barometer			         kuyāvu nirṇāyakayantra 
Thermometer		        śītoṣṇa nirṇāyakayantra
Another astronomer of the same era who was well equipped 

with observations was Sāmanta Candraśekhara of Odisha. He had 
built all the instruments of the Siddhāntic texts. Unfortunately 
his work also does not describe the details of the methods of 
observations. It appears that he was not keeping in touch with the 
Arabic nomenclature of stars and instruments as well. Interestingly, 
he identifies Prajāpati with the constellation Orion.
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fig. 19.4: Lunar occultation definition of 
grazing occultation (sandigdha grahaṇa)

fig. 19.5: A coronograph blocks the central bright photosphere so that only 
the corona of the sun can be recorded (mukurānvita nalikāyantra)

We need to study the texts of early nineteenth century and 
twentieth century because in the process, some very interesting 
results emerged. One of them is the development of texts in 
regional languages. As pointed out earlier, CR put in great efforts 
to persuade Siddhāntic astronomers to utilize the modern gadgets 
like telescopes for accurate measurements. He wrote in Kannada, 
Persian/Urdu and Tamil (but Tamil text is not available). Others 
who read the English books tried to translate them and compare 
with the texts that were known to local people. There are at least 
three books in Kannada written prior to 1900 and at least one in 
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Bengali. The Bengali book got translated back to English since it 
included more of Hindu astronomy (Mukherji 1905). This book 
has coined the names of constellations; here are some examples:
		  Cassiopeia 		  Kāśyapīya

		  Sirius 			   Divyāśvan

		  Procyon			   Saramā

		  Hercules			  Bhīṣma

		  Perseus 			   Paraśurāma

		  Centaurus		  Mahiṣāsura

There was already confusion in the names with the introduction 
of astrolabes for example:
		  Perseus as		  nr̥pārśva, manuṣyapārśva
		  Cygnus as		  pakṣī, samudrapakṣī
		  Pegasus as		  haya and turaga

		  Centaurus as		  kinnara and narāśva

As you may be aware, the Hindi textbooks use the name 
Varuṇa for Uranus; this is quite confusing since a newly discovered 
asteroid has been named Varuṇa.

List of New Terms 
It has been possible to list many synonyms and new words coined 
as part of the evolutionary processes. These include technical 
terms, names of stars and constellations. Some of these names 
have entered into non-astronomical texts also.
	 Aberration of light	 jyotirbhrama/tejobhrama

	 Acceleration	 tvaraṇa/vegotkakrṣa

	 Autumnal equinox /	 jalaviṣuva/mahāviṣuva
	 vernal equinox

	 Day circle	 dyurātravr̥tta/dyuvr̥tta/ahorātravr̥tta

	 Direct motion 	 r̥jugati

	 Ecliptic 	 ravi mārga

	 Eastern hemisphere	 pūrva-kapāla
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	 Western hemisphere	 paścima-kapāla

	 Libration	 tolana

	 Museum	 durlabha-vastuśālā

	 Meteoric stone	 dhiṣṇya

	 Nadir	 adhahsvastika

	 Observatory	 dr̥gāgāra

	 Penumbra	 pūrṇavacchāyā

	 Perturbation	 tuyta

	 Ring of Saturn 	 kaṭaka

	 Zenith 	 svastika/ākāśamadhya/khamadhya/ 		
	 ūrdhvasvastika/nabhomadhya

	 Zodiac	 rāśi-cakra, jyotiṣa-cakra

When Was Milky Way Called Ākāśagaṅgā? 
The Milky Way is such a mesmerizing sight in the sky that it 
did charm poets and artists in India as it did elsewhere. It has 
nakṣatrapatha, surapatha and similar names in Vālmīki’s Rāmāyaṇa 
and Kālidāsa’s Raghuvaṁśa. However, today it is known to us as 
ākāśagaṅgā. This name first appears in a Sanskrit text on alaṁkāras 
by Appayya Dīkṣita (fig. 19.6). He mentions a lotus in vyomagaṅgā. 
Therefore, we may assume that by seventeenth century the 
influence of Persian names were recognizable. 

We find several names like śiśumāra and matsyodara, which are 
not translations of Persian names. The identification and origin of 
these names are yet to be sorted out.
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Kuvalayananda of Appayya Diksita, Karnataka Samskrit University

fig. 19.6: The earliest reference to vyomagaṅgā

Conclusion
The study aims at understanding the finer details on the 
instruments and observational procedures.  In an attempt to extract 
the observational procedures several interesting applications 
have been identified. Some terms like apacchāyā, when properly 
interpreted, reveal finer details of measurement. This also throws 
light on some new unknown words perhaps coined for the need. 
Transit of Venus is one such example. This is especially true in the 
texts of late nineteenth century when the usage of telescopes was 
being introduced. A list of such new words has been presented 
and discussed. 
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Mahājyānayanaprakāraḥ 
Infinite Series for the Sine and Cosine 

Functions in the Kerala Works

G. Raja Rajeswari 
M.S. Sriram

Abstract: It is well known that the infinite series expansion 
for the sine and cosine functions were first discussed in the 
Kerala works on astronomy and mathematics and are invariably 
ascribed to Mādhava of Saṅgrāmagrāma (fourteenth century ce). 
The full proofs of these are to be found in the Gaṇitayuktibhāṣā 
of Jyeṣṭhadeva (composed around 1530 ce). However, there is a 
Kerala work called the Mahājyānayanaprakāraḥ, which describes 
the infinite series for the jyā (R sin θ) and the śarā (R(1 − cos θ)) 
and provides a shorter derivation of them. This was discussed 
in a paper by David Gold and David Pingree in 1991. However, 
that paper did not explain the derivation of the infinite series in 
the manuscript. In this paper we provide the derivation based 
on the upapatti provided by the author of the manuscript. 

Keywords: Infinite series, jyā, Kerala school, Mādhava, śarā, 
derivation. 

Introduction 
The Kerala school of astronomy and mathematics (fourteenth–
nineteenth centuries) is well known for its pioneering work on 
mathematical analysis, especially the discovery of the infinite 



294  | History and Development of Mathematics in India

series for π and also sine and cosine functions. In modern notation 
(Sarma 1972), the infinte series for the latter are: 

		      sin
! ! !

... ( )

cos
! ! ! !

... . (

� �
� � �

�
� � � �

� � � �

� � � � �

3 5 7

2 4 6 8
3 5 7

1

1
2 4 6 8

22)

 

They do not appear in any of the discovered works of Mādhava, 
the founder of the school, but are invariably ascribed to him by 
the later astronomer-mathematicians of the school like Jyeṣṭhadeva 
and Śaṅkara Varier. The Gaṇitayuktibhāṣā of Jyeṣṭhadeva (c.1530) 
is perhaps the first work to give the detailed derivation of all the 
infinte series (Sarma 2008). 

K.V. Sarma was perhaps the first to notice a manuscript in 
Sanskrit named the Mahājyānayānaprakāraḥ which describes the 
infinite series for the sine and cosine functions and also gives 
the upapatti (derivation) for the same, though he did not discuss 
the manuscript in detail. This manuscript was available in the 
India Office Library in London.1 A handwritten version of the 
manuscript was prepared by K.V. Sarma and it is available in the 
Prof. K.V. Sarma Research Foundation, Adyar , Chennai. K.V. 
Sarma ascribed the authorship of the manuscript to Mādhava 
himself. 

In a paper published in 1991, David Gold and David Pingree 
gave a full edition of this manuscript, and also provided the 
translation. However they did not provide any explanation of the 
derivation of the infinte series, as described by the author. Gold 
and Pingree argued that the author could not have been Mādhava, 
but definitely from the “Mādhava school”. 

 One of the authors of the present paper (G. Rajarajeswari) had 
worked on the manuscript for her MPhil thesis submitted to the 
University of Madras in August 2010. In that thesis, the manuscript 
had been translated into English afresh, and detailed explanatory 
notes had been provided. The present paper is essentially a 
summary of the thesis. 

	 1	 Ff. 12-16 of a manuscript, Burnell 17e, India Office Library, London.
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In this paper, we have explained the derivation of the series for 
R sin θ and R (1 − cos θ), completely based on the description of the 
derivation in the work. This derivation is very similar to the one 
in the Gaṇitayuktibhāṣā, but differs from it in some respects. Both 
the derivations are based on the iterative solution of the discrete 
version of the equ ations:

		  sin cos ( cos ) ,

cos sin .

� � � � � �

� � �

� �

�

� � � �

� �

� �
�

' ' ' '

' '

d d

d

0 0

0

1

1

Description of the Series for the R sine and 
the Numerical R sine Values 
The manuscript has three sections, viz. the explanation of the 
series, the method to derive the numerical sine values and the 
derivation for both the sine and cosine series. 

The author begins with the description of the series for R sine θ: 

fugR; pkioxsZ.k pkia rÙkRiQykfu pA 
gjsr~ lewy;qXoxSZfL=kT;koxZgrS% Øekr~AA

pkia iQykfu pk/ks¿/ks U;L;ksi;qZifj R;tsr~A 
thokIR;S laxzgks¿L;So fo}kfuR;kfnuk Ok`Qr%AA 

Mulitiply the arc (rθ) and the [successive] results by the square 
of the arc, divide (each of the above numerators) by the squares 
of the successive even numbers increased by that number and 
multiplied by the square of the radius in order. Place the arc 
and the successive results so obtained one below the other and 
subtract each from the one above. These together give the jīvā, 
as collected together in the verse beginning with vidvān, etc. 

Hence, 

R R R R
R

R R R

sin ( ) ( )( )
( )
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Here R is the trijyā (radius) of a circle whose circumference is 
21600. In fact,

R � � �3437 44
60

48
3600

.
In modern notation,

sin
! !

...� �
� �

� � � �
3 5

3 5
He also explains how we can get numerical values of R sin θ for 
any θ, using the method given by Śaṅkara Varier and others. 

Derivation of the Series 

OBTAINING THE COUPLED EQUATIONS 
FOR THE JĪVĀ, R sin θ AND THE ŚARĀ, R(1 − COS θ) 

We provide the essential steps in the author’s derivation of 
the series. First, he obtains the jīvā, R sin θ as the sum of the 
intermediate koṭi’s and the Śarā, R(1 − cos θ) as a sum of the 
intermediate jīvās. 

fugR; pkioxsZ.k bR;kfnuk b"VpkiL; T;ku;us dhn`';qiifÙk%A rRçn'kZuk; 
o`Ùkekfy[; ekr`fir`js•ak p OkqQ;kZr~A 

What is the proof for finding the jīvā for the desired arc, as given 
by the śloka, nihatya cāpavargeṇa . … For demonstrating that result, 
let a circle be drawn and let the “east–west and the north–south” 
(Y and X axis) (mātr̥-pitr̥-rekhā) be marked. 

The author begins thus: 
ES is a quadrant of a circle of radius R. OE and OS are the 

east–west and north–south lines.
Consider the 

arc EC = Rθ. 

This is divided into n equal arc bits (where n is a large number): 
EC1 = C1C2 =… CjCj + 1 ... = Cn − 1 Cn ≡ Rθ/n = α

and
ECj = Rθj = R j

n
θ  = Rjα. 

Draw CjPj parallel to OS and CjTj parallel to OE: 
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CjPj = R sin θj = R sin (αj). 
Cn is the same as C and Pn is the same as P. 
CnPn = CP = R sin θ. 

Bj = CjPj = R sin (α · j) is the bhujā corresponding to the arc ECj and 
Kj = CjTj = OPj R cos (α · j) is the koṭi corresponding to the arc ECj. 
Let Mj + 1 be the midpoint of the arc CjCj + 1. Then, 

Bj + 1/2 = Mj + 1Qj + 1 = R sin (α · (j + 1/2)) is the bhujā corresponding 
to the arc EMj + 1 , and Kj + 1/2= Mj + 1Vj + 1 = OQj + 1 = R cos (α· (j + ½)) 
is the koṭi corresponding to the arc EMj + 1. 

Now the bhujā khaṇḍa is the R sine difference or 
bhujā khaṇḍa = Bj + 1 − Bj = R sin (α ·(j + 1)) − R sin (α · j) = FCj + 1. 
The samasta jyā of the arc-bit CjCj+1 is the full-chord, CjCj + 1. 

Koṭi khaṇḍa = Kj − Kj + 1 = CjTj − Cj + 1 Tj + 1 = R cos (αj) − R cos (α(j 
+ 1)) = FCj. 

The author considers the two right triangles, Cj + 1FCj and OQj + 1  
Mj + 1. He says:

 r=krR{ks=k}L; rqY;kdkjkfUu.kZ;%

The two geometrical figures are similar. 

E

O

θ

P
1

Qj - 1

Pj - 1

P P
1
≡

C
1

C
2

Mj

Cj

Mj 1+

Cj 1+

C C≡ 1

Vj 1-

F

Tj Tj 1+
S
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He explains that they are similar as OMj + 1 is perpendicular to CjCj + 1  
and Cj + 1. F is perpendicular to Tj F and hence to OQj + 1.

 Then the author says:

rnkuha rL; pki•.ML; leLrT;ka HkqtdksfVH;ka i`FkÄ~fugR; f=kT;;k }s 
vfi foHkT; yC/s dksfV•.Ma Hkqtk•.Ma p Hkor%

Then when the full-chord of the arc-bit (samasta jyā) is multiplied 
by the R sine and R cosine (of the desired arc) and divided by 
the Radius (R) separately, R cosine – difference (koṭi khaṇḍa) and 
R sine – difference (bhujā khaṇḍa) of the arc-bit are the results. 

So, according to him: 

	 Bhujā khaṇḍa = Koti Samasta jya
R

× , 
and 
	 Koṭi khaṇḍa = Bhuj a Samasta jya

R
× . 

This can be understood as follows: 
Because of the C similarity of the triangles, we have 
		  C F

C C
OQ
OM

j

j j

j

j�

�

�

�
1

1

1

.

Here, 
CjF = Bj + 1 – Bj = Bhujā khaṇḍa. 
Cj Cj + 1 = Chord = Samasta jyā ≈ arc CjCj + 1 = α. 
OQj + 1 is the koṭi at the mid-point Mj + 1. OMj + 1 = R. Hence, 

		  � � �
�

�
�B B

K
Rj j

j
1

�
½

.

Similarly, 
		

K K
B
Rj j

j� ��
�

1

�
½

.

Then the author says: 

,oa •.Meè;çl`rkuak dksfVT;kuak ;ksxsu •.Ma fugR; f=kT;;k foHkT; 
yCnfe"Vs thok HkofrA

When the arc-bit is multiplied by the sum of koṭi jyās proceeding 
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from the mid-point of all the arc-bits and divided by the radius 
R, what results is the jīvā.

We explain this below:
Now, the R sine of the arc EC is CP = R sin θ: 
CP = R sin θ = PnCn− 0 = Bn − B0.

 We write this as, 
R sin θ = Bn − B0 = (Bn − Bn − 1) + (Bn − 1 − Bn − 2) + .... + (B1 − B0). 

Using the relation between the bhujā khaṇḍa and the mid-point (koṭi)

jīvā = R sin θ = �
R

K
jj

n

��

�� 1
2

0

1

.

Now, 

S = Śarā = R − R cos θ = R(1 − cos θ).
Sj + ½ = R − Kj + ½ = R − Vj + 1 Mj + 1 = OE − OQj+1 = EQj+1.

Now, 
Kj + ½ = R − Sj + ½

Hence,

R
R

R S

R
R

R n
R

S

R n

R

jj

n

j

sin ( ),
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.
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This is the discret Re version of
R R dsin cos ,� � � �

�
� � �� �� 1

0
' '

where 
R
α  corresponds to dθ'. 

Similarly, we find
R S

R
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n
( cos ) .1 1 20

1
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This is the discrete version of
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Iterative technique for solving the coupled  
equations for R sin θ and R(1 − cos θ)
We have the equations 

R R
R

Sjj

n
sin .� �

�
� �

�
�
�

�
�
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�� 1 2
0

1

 

and
R S

R
Bjj

n
( cos ) .1

1 2
0
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�
�
�

�
�
� ��

���
�  

The author uses an ingenious iterative technique to solve these 
equations and obtain the infinite series. 

Zeroth Approximation 
Here all śarās are taken to be zero: Sj = Sj + 1= 0. 
Then, 
	 R sin θ = R θ. 
and 
	 S = R(1 − cos θ) = 0. 

First Approximation 
In this approximation, in the expression for S, which is a sum of 
the bhujās, the bhujās are taken to be the arcs themselves. 

So,
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Now, Arc ECj = jα.
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In the words of the author: 
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•.Meè;kfn ok •.Mkfn ok •.MksÙkja b"VpkikUrja ;r~ ladfyra rfLeu~ 
•.Mxqf.krs lfr b"VpkioxkZ/± lEi|rsA v=k ;fRdf×ÓÛ;wukfrfjdks ≤';rs 
lo.kZL;kYiRos Ok`Qrs e.Mwdf'k'kwuka ykXÍyor~ yqI;ekuk rfLeÂso fueTtfrA 

When the arcs from the beginning of the desired arc to the middle 
or beginning or ending points of the arc-bits are summed over, 
and multiplied by the arc-bit then, half the square of the desired 
arc is obtained. Whatever appears as the deficiency or the excess 
will get eliminated just as the “tail of a frog’s new offspring 
disappears in itself”.

Here, we have used j n
j

n
�

�

��
2

0

1

2
.  

This is the discrete equivalent of 

xdx x
��

2

2
.

In this approximation, summation is done by taking n to be very 
large, and the limit is taken properly. So, actually, “calculus” type 
of ideas are used. 

Consider now the first approximation for R sin θ. 
The author says: 

thoku;us rq •.Meè;çl`rkfHk% dksfVfHk% •.ML; xq.kus drZO;s¿fi 
dksfVT;kUrjHkwrS% 'kj•.Ma gRok f=kT;;k foHkT; yC/fe"Vpkikf}'kksè;e~ 
f'k"Va b"VpkiT;k HkofrA 
vFkok 'kjSD;su •.Ma xq.kU;u~ ladfyrak'kHkwrkuak ,sD;a rRladfyrladfyresoA 
vr% ladfyrKkuk; f=kT;;k foHkÙkQfe"Vpkik/Zfe"Vpkisu fugR; f=kla[;su 
foHkT; iqu% f=kT;;k p gjsr~A yC/a T;ku;uk; pkikPNksè;a p HkofrA 

For finding the jīvā, multiply the cāpa khaṇḍa with the koṭi, 
corresponding to the middle of the arc-bit. Further, multiply 
by the śarakhaṇḍam which is the difference between the koṭi jyās, 
and divide it by the radius R. Subtract the obtained result by the 
arbitrary arc. What results is the jīvā. 

In other words, the product of the sum of the śaras multiplied 
by the arc-bit is the sum of the sums only. Therefore, to know 
the summation, half of the square of arc is divided by the radius 
R, multiplied by the desired arc, divided by the number 3 and 
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divided again by radius R. This result is to be subtracted from 
the desired arc to obtain the desired R sine (jyā). 

We explain this below. 
Now, 

R R
R
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R
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jj

n

jj

n
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Now, 	       S
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This corresponds to the arc Rθ = αn.
Sj corresponds to the arc Rθj = αj. Hence,

S
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Hence, the expression for R sin θ is a sum of sums. 
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This is the correct result for the double summation. In the large n 
limit, (n − 1)n(n + 1) can be replaced by n3. Then, using 

αn = Rθ 
we have, 
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Now, consider the śara expression:

S
R

Bj� ��� 1 2/ .

The author notes the following: 

iwo± 'kjku;uk; •.Meè;çl`rkuak thokuak ;ksxsu •.Msu xq.kuh;sfi 
rklkeKkrÙokPpkikukeso ;ksx% d`r%A 

Earlier, for obtaining the śara, though the sum of jīvās that 
proceeded from the middle of each part was to be considered; 
because the jīvās were not known, the summation of the arcs 
itself was considered (that is, the jīvās were taken to be the arcs 
themselves in the first approximation). 

bnkuha T;ku;uk; pkikfn;PNksè;fefr tkre~A vrLrs"kkeSD;ek¿us;e~A 
Kkrkfu T;kpkikUrjkfu rq ladfyrSD;ak'khHkwrkfu A rs"kak ;ksxL;ku;uk; 
KkrT;kpkikUra b"Vpkisus fugR; prqLla[;su grZO;e~A rRiqu% f=kT;;k 
foHkT; iwokZuhrkPNjkr~ 'kksè;Roa pA 

Now, in order to obtain the jyā, we know that “this” is the 
measure that needs to be subtracted from cāpa. Hence we need to 
find the sum of them. The differences of the jīvā and arc [at each 
khaṇḍa madhya] known, have become part of the sum of the sums. 

To find their sum, multiply the difference of jyā and cāpa (which 
is known) by the arbitrary arc, and divide it by number 4. Again 
divide it by Radius R and subtract it from the śara obtained 
before. 

We explain thSis below: 
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Now, this expression for the śara has to be used to find the next 
approximation for R sin θ. 

In the words of the author: 

iqu% T;k'kks/uk; 'kjkPNksf/rL; ladfyra dk;Ze~A rnFkZekus;a r`rh;iQye~A 
b"Vpkisu gRok iTla[;su foHkT; f=kT;;k grZO;e~A

Again to find the correction to the jyā, we have to find the sum 
of the corrections to the śara (at each khaṇḍa madhya). For that 
purpose, find the third result and multiply it by the arbitrary arc, 
and divide it by number 5, multiplied by the radius R. 

We explain this below:
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where we have used 
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The author says: 
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,oeqÙkjksÙkjiQykfu us;kfuA 

Bring out the remaining results in the same manner. 

So, this procedure should be continued to obtain the successive 
corrections to the jīvā, R sin θ and the śara, R (1 – cos θ). 

The infinite series for the jīvā, R sin θ and śara, R(1 – cos θ) are 
stated again by the author.

He notes that n2 + n = n(n + 1). So he states the series for R sin 
θ and R(1 – cos θ) in the modern form (apart from the appearance 
of R): 

R R R
R

R
R

R R
R
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sin ...
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3 4
4R

....

Concluding Remarks 
It appears that the infinte series for π and the sine and cosine 
functions had become common knowledge among the astronomer-
mathematicians of Kerala by the sixteenth century. The Yuktibhāṣā 
gives a detailed derivation for the same. In a short Kerala 
manuscript Mahājyānayanaprakāraḥ, the author states the infinite 
series and discusses the method due to Śaṅkara Varier and others 
to compute them. More importantly, he gives a simple and elegant 
derivation of the series for R sin θ and R(1 – cos θ). It is a compact 
version of the derivation in the Yuktibhāṣā. In this paper we have 
explained this derivation using the modern notation. 
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Lunar Eclipse Calculations in 
Tantrasaṁgraha (c.1500 ce)

D. Hannah Jerrin Thangam 
R. Radhakrishnan 

M.S. Sriram

Abstract : We discuss the calculations pertaining to a lunar eclipse 
in the celebrated Kerala work on astronomy, Tantrasaṁgraha 
(c.1500 ce). We outline the procedure for computing the middle 
of the eclipse, the half durations and the half durations of totality, 
using iterative processes. We illustrate the procedure by taking 
up the lunar eclipse which occurred on 27/28 July 2018. We 
compare the computed values based on Tantrasaṁgraha, with 
those obtained using the modern procedures and tabulated 
in modern almanacs like the Rāṣṭrīya Pañchāṅga, published 
by the India Meteorological Department. We also make the 
comparison for another recent eclipse on 7 August 2017. There 
is a very remarkable agreement between the tabulated values 
and those computed using the Tantrasaṁgraha procedure, for 
both the eclipses.

Introduction
India had an unique, definitive and very significant tradition 
in astronomy right from the Vedic times (see for instance, Sen 
and Shukla 1985). Simplicity of the calculational procedure is 
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a characteristic feature of the Indian astronomical tradition. 
This is particularly true of the computation of the planetary 
longitudes and latitudes. Even with such simplified procedures, 
the computed values are reasonably accurate. Consider for 
instance, Tantrasaṁgraha (c.1500 ce), the celebrated Kerala work 
on astronomy (Sarma 1977 ; Ramasubramanian and Sriram 2011). 
The computed value of the moon’s longitude in Tantrasaṁgraha 
is correct up to a degree, on the average, even for modern dates 
(Sriram and Ramasubramanian 1994).

The physical variables associated with the lunar and solar 
eclipses (like the instant of conjunction or opposition, half 
durations of the eclipse, etc.) are very sensitive to the parameters 
associated with the sun and the moon, and the particular procedure 
for computations. They are critically tested during eclipses. In fact, 
it was standard Indian practice to revise the parameter based on 
eclipse observations.

Parallax does not play a role in lunar eclipse calculations, 
whereas it has a very significant effect on the occurence of a solar 
eclipse and its progress. Correspondingly, the calculations are 
that much harder for a solar eclipse. In this article, we confine our 
attention to the computation of a lunar eclipse in the celebrated 
text Tantrasaṁgraha of Nīlakaṇṭha Somayājī (c.1500 ce).

A lunar eclipse occurs when the earth’s shadow blocks the 
the sun’s light, which otherwise reflects off the moon. There are 
three types – total, partial and penumbral – with the most dramatic 
being a total lunar eclipse, in which the earth’s shadow completely 
covers the moon. A lunar eclipse can occur only at full moon. A 
total lunar eclipse can happen only when the sun, the earth and 
the moon are perfectly lined up (at least for a short time interval) 
– anything less than perfection creates a partial lunar eclipse, or 
no eclipse at all. As the moon’s orbit around the earth is inclined 
to the earth’s orbit around the sun, an eclipse doesn’t occur at 
every full moon; a total lunar eclipse is even rarer, as the “perfect” 
alignment is even rarer. 
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Lunar Eclipse Computations in Tantrasaṁgraha
NUMBER OF PLANETARY REVOLUTIONS IN  
A MAHĀYUGA AND AHARGAṆA

We have to first find the time of conjunction of the moon and the 
earth’s shadow, or the instant when the sun and the moon are in 
opposition as viewed from the earth. To determine this instant, the 
first step is to find the mean longitudes of the sun, the moon, the 
latter’s node and also its apogee. The mean longitude of any object 
can be determined using the mean rate of motion of the object, 
and the ahargaṇa, which is the number or the count of days from 
an epoch. The mean rate of motion is found from the number of 
revolutions made by the object in a mahāyuga of 43,20,000 years, 
and the number of civil days in a mahāyuga.

All the calculations in the ancient Indian texts are in a 
geocentric framework, in which the sun also revolves around 
the earth. The following table (Table 21.1) gives the number of 
revolutions completed by the sun, the moon, its apogee and its 
node in a mahāyuga in Tantrasaṁgraha. These values are the same as 
in Āryabhaṭīya of Āryabhaṭa (c.499 ce), the first available Siddhāntic 
text in the Indian tradition (Shukla and Sarma 1976).

According to both Āryabhaṭīya and Tantrasaṁgraha, the number 
of civil days in a mahāyuga is 1,577,917,500 days. 

Mean rates of Motion of the Sun, Moon,  
Moon’s apogee and Moon’s Node 
If N is the number of revolutions of an object in a mahāyuga, its 
mean rate of motion in degrees per day is given by 

Mean rate of motion (degrees per day) = N
1 577 917 500

360
, , ,

.�
�
�

�
�
�� �

Table 21.1: The Number of Revolutions Completed by the Planets 
in a Mahāyuga of 4,320,000 years in Tantrasaṁgraha

Planet No.of Resolutions (N)
Sun  4,320,000
Moon 57,753,320
Moon’s apogee      488,122
Moon’s node     232,300
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The Tantrasaṁgraha values of the mean rates of motion are 
presented in Table 21.2.

Table 21.2: Mean Rates of Motion

No. Planet Mean Rate of Motion (in 
degrees/day)

1.      Sun      0.985602859
2.      Moon 13.17635124
3.      Moon’s Apogee     0.111364453
4.      Moon’s node   − 0.052998968

Mean Longitudes of the Sun, Moon and Moon’s Node
It is straightforward to obtain the mean longitudes of the planets 
from the ahargaṇa. Let A be the ahargaṇa and N the number of 
revolutions completed by the planet in a mahāyuga. Then, the 
number of revolutions including the fractional part covered by 
the planet since the epoch, till the mean sunrise (local time of 6 
a.m.) at the traditional standard Indian meridian, namely, Ujjain, 
is given by: 

n A N
�

�
1 577 917 500, , ,

. 

We have to take the epochal value of the mean longitude, denoted 
by θ (epoch) , also into account. As the integral multiples of 360º 
are not taken into account in the longitudes, the mean longitude 
corresponding to an ahargaṇa, A is given by: 

� �0 epoch�
��

�
�

�

�
� � � �

A N f
1 577 917 500

360
, , ,

( )

In Tantrasaṁgraha, the epoch is the Kali-Yuga beginning, which 
corresponds to the mean sunrise at Ujjain on 18 February 3102 
bce. The mean longitudes of the objects relevant for a lunar eclipse 
corrsponding to any ahargaṇa, A are presented in the Table 21.3:
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Table 21.3: Mean Longitudes of the Planets for an Ahargaṇa,  
A at Mean Sunrise at Ujjain

Planet θ (Epoch) Mean longitude, θ0 for an ahargaṇa, A
Sun 0º0'0"

         θ0 Sun = 
A f��

�
�

�

�
� � �

43 20 000
1 577 917 500

360, ,
, , ,

Moon 4º45'46"
       θ0 Moon = A f��

�
�

�

�
� � �

57 753 320
1 577 917 500

360, ,
, , ,

 + 4º45'46"

Moon’s 
apogee

119º17'5"
θ0 Moon’ apogee = A f��

�
�

�

�
� � �

488 122
1 577 917 500

360,
, , ,

 + 119º17'5"

Moon’s   
node

202º20'0"
  θ0 Moon’ node = A f��

�
�

�

�
� � �

232 300
1 577 917 500

360,
, , ,

+ 202º20'0"

For the two eclipses that we are considering, the longitudes of the 
sun and the moon are listed at 5h 29m Indian Standard Time (IST) 
which is the local time at the present standard meridian of India, 
whose terrestrial longitude is 82.5º , whereas our mean longitudes 
are at 6h 0m local time at Ujjain whose terrestrial longitude is 75.78º. 
So, we have to do two corrections to our mean longitudes to be 
able to compare with the tabulated values at 5h 29m for a terrestrial 
longitude of 82.5º. 

The mean longitude of the planet at 5h 29m local time at Ujjain 
is given by: 

� �0 1 0
31

24 60, � � �
�

�
�
�

�
�
�Mean rate of motion  . 

The mean longitude at 5h 29m local time at the Indian standard 
meridian, that is, at the Indian Standard Time (IST) is given by: 

� �0 2 0 1
82 5 75 78

24 15, ,
. . .� � �
�� �
�

�
�
�

�
�
�Mean rate of motion  

TRUE LONGITUDES OF THE SUN AND THE MOON 

In the Indian astronomical tradition, at least from the time of 
Āryabhaṭa (499 ce), the procedure for calculating the geocentric 
longitudes of the sun and the moon consists essentially of two 
steps: first, the computation of the mean longitude of the planet 
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known as the madhyama graha and second, the computation of 
the true or observed longitude of the planet known as the sphuṭa 
graha. The mean longitude is calculated for the desired day by 
computing the number of mean civil days elapsed since the epoch 
(this number is called the ahargaṇa) and multiplying it by the mean 
daily motion of the planet, and adding any epochal correction. 
Having obtained the mean longitude, a correction known as 
manda-saṁskāra (manda-correction) is applied to it. In essence, this 
correction takes care of the eccentricity of the planetary orbit due to 
its elliptical nature. The equivalent of this correction is termed the 
“equation of centre” in modern astronomy, and is a consequence 
of the elliptical nature of the orbit. The longitude of the planet 
obtained by applying the manda-correction is known as the manda 
sphuṭa graha, or simply the manda sphuṭa. The manda-correction is 
the only correction that needs to be applied in case of the sun and 
the moon for obtaining their true longitudes (sphuṭa graha). So, 
the manda sphuṭa is the true longitude in their case. We will now 
briefly discuss the details of this correction using the “epicyclic” 
or “eccentric” models.

In fig. 21.1, O is the centre of the kakṣyā maṇḍala (deferent) on 
which the mean planet P0 is moving with a mean uniform velocity. 
OΓ is the reference line which is in the direction of Meṣādi (first 
ponit of Aries). The deferent is taken to be of radius R, known as 
the trijyā which is the radius of a circle whose circumference is 
21,600 units which is the number of minutes in 360º. The value of 
R is nearly 3,438. Around the mean planet P0, a circle of radius r 
is to be drawn. This circle is known as the manda-nīcocca-vr̥tta, or 
simply as manda-vr̥tta (manda-epicycle). The texts specify the value 
of the radius of this circle r (r << R), in appropriate measure, for 
each planet. At any given instant of time, the true planet P is to 
be located on this epicycle by drawing a line from P0 along the 
direction of the mandocca, or the apogee (parallel to OU). The point 
of intersection of this line with the epicycle gives the location of 
the planet P. The longitude of the mean planet P0 moving on this 
circle is given by 

Γ ÔP0 = Mean longitude = θ0.
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fig. 21.1: The Epicyclic and Eccentric Models of Planetary Motion

The true longitude of the planet is given by ΓÔP0 which is to be 
obtained from θ0. This is known as the “epicycle” model. 

Alternatively, one could draw a manda-epicycle of radius r  
centred around O, which intersects OU at O'. With O' as the centre, 
a circle of radius R (shown by dashed lines in the figure) is drawn. 
This is known as the pratimaṇḍala, (eccentric circle). Since P0P and 
OO' are equal to r and they are parallel to each other, O'P = OP0 
= R. Hence, P always lies on a circle of radius R, which is known 
as the eccentric circle. Also, 

Γ Ô'P = Γ Ô'P0 = Mean longitude = θ0.
Thus, the true planet P can be located on an eccentric circle of 
radius R centred at O' (which is located at a distance r from O 
in the direction of the apogee), simply by marking a point P on 
it such that ΓÔ'P corresponds to the the mean longitude of the 
planet. Since this process involves only an eccentric circle, without 
making a reference to the epicycle, it is known as the eccentric 
model. Clearly, the two models are equivalent to each other.

The procedure for obtaining the true longitude by either of 
the two models involves the longitude of the mandocca (apogee). 
In fig. 21.1, OU represents the direction of the mandocca, whose 
longitude is given by 
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Γ ÔU = mandocca (apogee) = θm

θ represents the true longitude which is to be determined from 
the position of the mean planet P0. Clearly, 

θ = Γ ÔP = Γ ÔP0 − PÔP0 = θ0 − ∆θ.
Here, ∆θ = PÔP0 is the correction-term. Since the mean longitude of 
the planet, θ0 is known, the true longitude, θ is obtained by simply 
subtracting ∆θ from θ0. The expression for ∆θ can be obtained by 
making the following geometrical construction. We extend the 
line OP0, which is the line joining the centre of the kakṣyā maṇḍala 
and the mean planet, to meet the epicycle at X. From P drop the 
perpendicular PQ onto OX. Then: 

UÔP0 = Γ ÔP0 − Γ ÔU = θ0 − θm,
is the manda-kendra (anomaly) whose magnitude determines the 
magnitude of ∆θ. Also, since P0P is parallel to OU (by construction), 
P«P0Q = θ0 − θm. Hence, PQ = r sin (θ0 − θm), and P0Q = r cos (θ0 − θm). 
Since the triangle OPQ is right-angled at Q, the hypotenuse OP = 
K (known as the manda-karṇa) is given by

K OP OQ QP OP P Q QP

R r rm m

� � � � �� � �

� � �� �� � � �� �

2 2
0 0

2 2

0

2 2 2
0cos sin� � � �

Again from the triangle POQ, we have 
K sin ∆θ = PQ = r sin (θ0 − θm)

Hence, 
sin ∆θ = sin (θ0 − θm) = r

K
 sin (θ0 − θm)

Now in most of the Indian astronomy texts, is not a constant, but 
varies such that r

K  is a constant. r
K  is writen as 

r
R
0 , where r0 is the 

mean or tabulated value of the radius of the manda epicycle. Hence, 
the true longitude, θ is given by the expression: 

			   � � � �� � �� ��
��

�
��

�
0

1 0
0sin sin .

r
R m

	              (1)

For the sun, r
R
0 3

80
= , and θm = 78º. For the moon, r

R
0 7

80
= , and θm 
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increases at a constant rate. 
Hence, the true longitudes of the sun and the moon are given 

by: 

		  � � �sun 0 sun 0 sun� � � �� ��
��

�
��

�sin sin1 3
80

78 .               (2)

	       � � � �moon 0 moon 0 moon  moon� � �� ��
��

�
��

�sin sin .1 7
80 m           (3)

TRUE DAILY OTIONS OF THE SUN AND THE MOON

Verses 53-54 in “Sphuṭaprakaraṇam” ( True Longitudes of Planets) 
in Tantrasaṁgraha give the expression for the “instantaneous” 
velocity of a planet, after discussing the manda-correction to a 
planet: 

Let the product of the koṭiphala (in miuutes) and the daily motion 
of the kendra be divided by the square root of the square of 
the bāhuphala of the moon subtracted from the square of trijyā. 
The quantity thus obtained has to be subtracted from the daily 
motion [of the moon] if [the kendra lies within the six signs] 
beginning from Makara and is to be added to the daily motion 
if [the kendra lies within the six signs] beginning from Karkaṭaka. 
This will be accurate (sphuṭatarā) value of the instantaneous 
velocity can be obtained (tatsamayajāgati) of the moon. For the 
sun also [the instantaneous velocity can be obtained similarly]. 

These verses clearly state that at any instant, the velocity or the 
true daily motion of the sun or the moon is given by: 

d
dt

d
dt

r

R r
m

m

d
dt

m� � � �

� �

� �

� �
�

� �

�
0 0 0

2
0

2 2
0

0cos( )

sin ( )
.

( )

where θ0 is the mean longitude, θm is the mandocca of the planet, 
θ0 − θm is the (manda) kendra, r0 is the radius of the epicycle and R 
is the radius of the deferent. r0 cos(θ0 − θm) is the koṭiphala, and r0 
sin(θ0 − θm) is the bāhuphala. The first term corresponds to the mean 
velocity and the second term corresponds to the manda-correction. 
This correction term can be written as: 
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�
�

� �

�r
R m

m

d
dt

m

r
R

0
0

2
0

0

1 0
2

2

cos( )

sin ( )
.

( )� �

� �

� �

The true daily motion of the planet can then be written as: 

d
dt

d
dt

r
R

r
R

m

m

d
dt

m� � � �

� �

� �

� �
�

� �

�
0 0

2
0

0

0
2

2

0

1

cos( )

sin ( )
.

( )

It can be easily seen that this expression can be got by taking the 
derivative of the expression for the true longitude, θ in terms of 
the mean longitude, θ0, the apogee, θm, and the epicycle radius, r0. 
Here, it can be mentioned that the instantaneous velocity was first 
discussed by Bhāskara II in his celebrated work, Siddhāntaśiromaṇi, 
in 1150 ce itself. There, he had essentially used the approximation, 
sin− 1x ≈ x, for small x. In Tantrasaṁgraha, no such approximation is 
made and the correct expression for the derivative of the inverse 
sine function is used. This is in 1500 ce! This is truly amazing. 

For the sun, 
r
R
0 3

80
=  and θm = 78º. For the moon, 

r
R
0 7

80
=  and θm 

is its apogee which increases constantly. Then, their true daily 
motions are given by the expressions: 

d
dt

d
dt

d
dt� � � �

sun 0 sun sun� �
� �

�

� �3
80

3
80

0

2

78

1

0 78

2
2

cos( )

sin (

( )

��0 78� �)
,                           (4)

d
dt

d
dt

m
d

d
m m� � � �
� �

moon 0 moon moon moon
moon moon

� �
�

�7
80 0cos( ) ( )

tt

m1 7
80

2
2

2
0� �sin ( )

.
� �moon moon

    (5)

TIME OF CONJUNCTION OF THE MOON AND  
THE EARTH’S SHADOW 

Possibility of a Lunar Eclipse 
The earth’s shadow always moves along the ecliptic and its 
longitude will be exactly 180º plus that of the longitude of the sun. 
When the moon is close to the shadow and both of them are near a 
node, then there is a possibility of a lunar eclipse. This means that 
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the latitude of the moon should be small. This situation is depicted 
in fig. 21.2, where C represents the chāyā (shadow), and A and B 
are the positions of the moon before and after the lunar eclipse. 

Computation of the Instant of Conjunction 
Usually, the longitudes of the planets are calculated at sunrise 
on a particular day. Let θs, θm and θc be the true longitudes of the 
sun, the moon and the chāyā (earth’s shadow) respectively. Then, 
obviously,
			   θc = θs − 180º.                                             (6)
When the longitudes of the moon and the earth’s shadow are the 
same, the sun will be exactly at 180º from the moon. Since the 
sun and the moon are diametrically opposite each other at this 
instant, they are said to be in opposition. In order to determine this 
instant, the true longitudes of the sun (θs) and the moon (θm), are 
first calculated at sunrise on a full moon day. Then, the difference 
in longitudes of the moon and the chāyā, given by 
	  		  ∆θ = θm − θc 			                (7)
is computed. The sign of ∆θ indicates if the instant of opposition 
is over or is yet to occur. 
	 1.	 If ∆θ < 0, it means that the instant of opposition is yet to 

occur, as the moon moves eastward with respect to the sun. 
	 2.	 If ∆θ > 0, it means that the instant of opposition is already 

over. The positions of the moon corresponding to these two 
situations are indicated by A and B in fig. 21.2. Let ∆t be the 
time interval between sunrise and the instant of opposition 
in ghaṭikās or in nāḍikās. Note that there are 60 ghaṭikās in a 
civil day. Then ∆t is computed using the relation, 

fig. 21.2: Possibility of a Lunar Eclipse.
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� 60 		                (8)

where dm and ds are the true daily motions of the sun ( d
dt
θsun )  

and the moon ( d
dt

θmoon ) which are given in the equations (4) 
and (5) respectively. The above expression for ∆t (in ghaṭikās) 
is obviously based upon the rule of three. If 60 ghaṭikās 
correspond to a difference in longitude dm − ds, what is the 
time interval ∆t, corresponding to the longitude difference, 
|∆θ|?

Having determined ∆t, the time of opposition of the sun and 
the moon, or equivalently the conjunction of the moon and the 
earth’s shadow at the end of the full moon day, which is the same 
as the middle of the eclipse denoted by tm, is obtained using the 
relation: 
		  tm = Sunrise time ± ∆t.			                (9)
We have to use “+” if the instant of opposition is yet to occur and 
“−” otherwise. 

EXACT MOMENT OF CONJUNCTION BY ITERATION 

The instant of conjunction calculated using (9) is only approximate, 
as ∆t used in the expression is found using a simple rule of three, 
that presumes uniform rates of motion for the sun and the moon, 
which is not true. In order to take the non-uniform motion into 
account, an iterative procedure to determine the true instant of 
conjunction is described here.

As per the computational scheme followed by Indian 
astronomers, the instant of sunrise or sunset is the reference 
point for finding the time of any event. Hence, the instant of true 
sunrise is first to be determined accurately. It was noted that this 
involves the application of the cara (ascensional difference), and 
the equation of time, where the latter has two parts, namely the 
correction due to the equation of centre and the correction due 
to the prāṇakalāntara. Here it is prescribed that the cara and the 
equation of time are to be determined at the instant of conjunction, 
in order to find the instant of true sunrise or sunset as the case 
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may be. In this paper, we do not follow this procedure. We find 
the true longitudes of the sun and the moon directly at 5h29m 
Indian Standared Time (IST) on the given day. All the times would 
refer to the IST. This is because, we can then directly compare our 
computations with the ephemeris values (Rāṣṭrīya Pañcāṅga).

First, the true longitudes of the sun and the moon are found at 
5h29m IST on the full moon day. Next, ∆t is found using equation 
(8), and the first approximate value of the instant of conjunction, 
tm is found using equation (9). The true longitudes of the sun and 
moon, and their true daily motions are determined at this instant 
using the procedure described in the previous sub-section, and 
∆θ is found at this instant. The second approximate value of the 
instant of conjunction is now determined using equations (8) and 
(9). The true longitudes and the daily motions are again computed 
at this instant, and the third approximate value is found using 
equations (8) and (9). This iteration process is carried on till two 
successive values of the instant of conjunction are the same to the 
desired accuracy. 

MOON’S LATITUDE 

The expression for the latitude, β of the moon is given by: 
sin β = sin i sin (θm − θn),

where i is the inclination of the moon’s orbit, and θm, θn are the 
true longitudes of the moon and its ascending node respectively. 
When i is small, 

β ≈ i sin (θm − θn).
In Indian astronomy texts, i is taken to be i = 4.50 = 270'. Then the 
formula given for the latitude β of the moon is, 

			   �
� �

�
� �270'  sin( )R

R
m n                           (10)

where R is the trijyā, whose value is taken to be 3,438 minutes, and 
270' is the inclination of the moon’s orbit in minutes. The latitude 
thus obtained is in minutes which should be less than that of sum 
of the semi-diameters of the shadow and the moon, for a lunar 
eclipse to occur. 
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THE TIME OF HALF-DURATION, THE FIRST  
AND THE LAST CONTACT 

The expression for the half-duration of the eclipse and the 
procedure to determine the instants of the beginning and the end 
of the eclipse may be understood with the help of fig. 21.3. Here 
O represents the centre of the shadow, and X is the centre of the 
moon’s disc as it is about to enter into the shadow.

The total duration of the eclipse is made up of two parts:  
	 1.	 The time interval, ∆t1, between the sparśa, which is the instant 

at which the moon enters the shadow and the instant of 
opposition (tm). 

	 2.	 The time interval, ∆t2 between the instant of opposition (tm), 
and the mokṣa, which is the instant of complete release. 

The suffixes 1 and 2 refer to the first and the second half-
durations of the eclipse respectively. Though one may think naively 
that these two durations must be equal, this is not so because of 
the continuous change in the longitude of the sun, the moon and 
moon’s nodes. Let r1 and r2 be the radii of the discs of the earth’s 
shadow in the path of the moon and moon itself. In fig. 21.3, AX 
and OX represent the latitude (β) of the moon and the sum of the 
radii of the shadow and the moon, that is, r1 + r2, respectively. If 
dm and ds refer to the true rates of motions of the moon and the 
sun at the middle of the eclipse, the first half-duration of the eclipse 
in ghaṭikās or nāḍikās is found using the relation:

fig. 21.3 : First and the Second Half-durations of a Lunar Eclipse
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Here the factor 60 represents the number of ghaṭikās or nāḍikās in 
a day. In the above expression, β is the latitude of the moon at the 
sparśa or the beginning of the eclipse. However, the instant of the 
beginning of the eclipse is yet to be determined, and hence the 
latitude of the moon at the beginning is not known. Moreover, the 
latitude of the moon is a continuously varying quantity. What is 
prescribed in the text Tantrasaṁgraha is an iterative procedure for 
finding the half-duration. As a first approximation, the latitude 
known at the instant of opposition is taken to be β and ∆t1 is 
determined. The iterative procedure to be adopted is described in 
the following section. 

HALF-DURATIONS: ITERATION METHOD

The positions of the sun and the moon at the time of contact are 
now by subtracting their motions during the first-half duration 
from their values at the instant of opposition. The motion of the 
sun/moon is obtained by multiplying their true daily motions 
(dm,  ds) by the half duration – the first approximation of which 
has been found as given by (11) – and dividing by 60 (the number 
of nāḍikās in a day). This is done for the node also (but applied in 
reverse, as its motion is retrograde), whose longitude is required 
for the computation of moon’s latitude. The latitude of the moon, 
β is now calculated using the values of dm and ds at the first contact. 
∆t1 is now calculated using this value of β. This is the second 
approximation to it. The iteration procedure is carried on till the 
successive approximations to the half-durations are not different 
from each other to a desired level of accuracy. The procedure is 
the same for computing the second half-duration (mokṣa kāla), 
except that the positions of the sun and moon at the time of the 
mokṣa (release) are obtained by adding their motions during the 
second half-duration to their values at the instant of opposition. 
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FIRST AND SECOND HALF-DURATIONS OF TOTALITY

The beginning and end of totality are depicted in fig 21.4. Totality 
is the moment when the earth’s shadow covers the moon fully. The 
procedure to find the two half-durations of totality is discussed 
below. The procedure is the same as the one for first and second 
half-durations of the eclipse, as a whole, with r1 + r2 replaced by 
r1 − r2 in the relevant expressions. Let T(1) (in minutes) be the first 
half duration of totality. 

The expression for T(1) is given by,

T
r r

d dm s

( )
( )

,1 601 2
2 2

�
� �

�
�

�

where β is the latitude of the moon at the beginning of totality. 
However, the instant of the beginning of the totality is yet to be 
determined and hence the latitude of the moon at the beginning 
of totality is not known. As a first approximation, β is taken to 
be the latitude known at the instant of opposition, and T(1) is 
determined. Then, an iteration procedure which is the same as the 
one for the first half-duration of the eclipse as a whole, is used to 
find the first half-duration of totality to the desired accuracy. The 
second half-duration of totality is determined in the same manner.

ANGULAR RADII OF THE EARTH’S SHADOW  
AND THE MOON’S DISC

The average radii of the orbits of the sun and moon (rs and rm), 

fig. 21.4: The First and Second Half-durations of Totality 
 of a Lunar Eclipse
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and the actual linear radii of the sun, the moon and the earth (Rs, 
Rm and Re are given in the Table 21.4).

Table 21.4: The Radii of the Sun, Moon and Their Orbits,  
and the Radius of the Earth 

Radii of Notation used Radius in Yojanas
Orbit of the sun rs 459,620
Orbit of the moon rm 34,380
Sun Rs 2,205
Moon Rm 157.5
Earth Re 525.21

From fig 21.5, it is clear that the angular radius, α of the moon is 
m

m

R
r . This is in radians. We have to multiply this by 3,438, which is 

the number of minutes in a radian, to obtain the value in minutes. 
Hence, the angular radius of the moon in minutes is given by 

r
R
r

m

m
2 3 438 157 5

34 380
3 438 15 75� � � � �, .

,
, . ' .

Angular Radius of Earth’s Shadow
In fig 21.6: 
	             Radius of the sun = AS − Rs,
	           Radius of the earth = CE − Re,
	 Radius of the earth’s shadow = GF − Rsh.

fig 21.5: Distance between Earth and Moon’s Disc

fig 21.6: Angular Radius of the Earth’s Shadow  
(not to scale)
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It is clear that the triangles ABC and CDG are similar. Hence,
CD
DG

AB
BC

= .

Now, CD = CE − DE = CE − GF = Re − Rsh.
DG = EF = rm (Radius of the moon’s orbit).
AB = AS − BS = AS − CE = Rsh − Re.
BD = SE = rs (Radius of the sun’s orbit) .

Hence, R R
r

R R
r

R
r

R
r

R R
r

e sh

m

sh e

s

sh

m

e

m

sh e

s

�
�

�

� �
�

,  or

Now 
R
r

sh

m
 is the angular radius of the earth’s shadow in radians. 

Hence angular radius of the earth’s shadow (at the moon) in 
minutes, 

r
R
r

R R
r

e

m

sh e

s
1 3 438

525 21
34 380

2 205 525 21
45

� �
��

�
�

�

�
��
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, .
99 620

39 96
,
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Here, it should be noted that r1 and r2 are the average values of 
the angular radii of the earth’s shadow and the moon’s disc. The 
actual radii vary with time as radii of the sun’s and moon’s orbit 
vary with time.

LUNAR ECLIPSE ON 27/28 JULY 2018: COMPUTATIONS  
BASED ON TANTRASAṀGRAHA 

For the demonstration of the above procedure to find the instant 
of opposition and half-duration at the time of release and contact 
during lunar eclipse, let us consider the lunar eclipse which 
happened on 27/28 July 2018 which was a total lunar eclipse 
which lasted about 3h55m. The duration of totality was 1h44m. 
Now, the ahargaṇa for 22 March 2001 is known to be 1,863,525 
(Ramasubramanian and Sriram 2011). Then the ahargaṇa for 27 
July 2018 is easily calculated to be 1,869,861.
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True Longitude of the Sun and Its Rate of Motion on 27 July 2018, 5h 
29m IST. 
		  The mean longitude of the sun at 6h at Ujjain is given by, 
		  �0

4 320 000
1 577 917 500

�
�A , ,

, , ,
		       = 5119.278746 revolutions.
The mean longitude of the sun in degrees can be obtained by 
taking only the fractional part of the above value and multiplying 
it by 360, that is, 
		   = 0.278746 × 360
		   = 100.348º.
The mean longitude of the sun at 5h29m (in degrees) at Ujjain is 
given by, 

		  θ01 sun = θ0 − Mean rate of motion × 31
24 60×

		            = 100.348 − 0.985602859 × 360 
		            = 100.327º

The mean longitude of the sun at Indian Standard Meridian (ISM) 
is given by:

		  θ02 sun = θ01 sun − 0.985602859 × ( . . )82 5 75 78
24 15
�
�

Hence, the mean longitude of the sun at 5h 29m IST in deg. min. 
and sec. is given by: 

θ02 sun = 100.309º = 100º18'32"
Using the formula for the true longitude of the sun in terms of the 
mean longitude, the true longitude of the sun is: 

θsun = 100º18'32" − sin− 1 ( 3
80

sin (100.309º − 78º))

	          = 99.493º = 99º29'35". 
The true daily motion of the sun can be obtained as,

�Sun � �
� � �

� �
0 985602859

100 18 78

1 100 1

3
80

3
80

2
2

2
.

cos( )

sin (

'32" 

88 78
0 985602859

0 57

'32" 

'5"

� �
�

� �

)
.
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True Longitude of the Moon and Its Rates of Motion on 27 July 2018, 
5h 29m IST 
Including the dhruva of the moon, the mean longitude of the moon 
6h at Ujjain is given by 

	 θ0 = 
A× 57 753 320
1 577 917 500

, ,
, , ,   revln. + 4.7627777º

	     = 68438.736935562221 revln. + 4.7627777º
	     = 0.736935562221 × 360º + 4.7627777º
	     = 270.060º

The mean longitude of the moon at 5h29m local time at Ujjain is 
given by, 

	 θ01 Moon = θ01 − Mean rate of motion × 31
24 60×

	             = 270.060º − 13.17635124 × 31
24 60×

	             = 269. 776º. 

The mean longitude of the moon at 5h29m IST is given by, 

	 θ02 moon = θ01 moon − 13.17635124 × ( . . )82 5 75 78
24 15
�
�

            = 269.530º.
Hence, the mean longitude of the moon at 5h29m IST in deg. min. 
and sec. is given by, 

	 θ0 moon = 269.530º = 269º31'48"
The longitude of the moon’s apogee at 6h at Ujjain including the 
dhruva is given by, 

	 θ0 moon’s apogee = A��

�
�

�

�
�

488 122
1 577 917 500

,
, , ,

f × 360º + 119.28472º

		         = 0.4334675581 × 360º + 119.28472º
		         = 275.330º

The mean longitude of the moon’s apogee at 5h29m local time at 
Ujjain is given by, 

	 θ01 m = θ0 − Mean rate of motion × 31
24 60×

	         = 275.333 − 0.111364453 × 31
24 60×

	         = 275.331º.
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The mean longitude of the moon’s apogee at 5h29m IST is given by 

	 θ02 m = θ01 m − 0.111364453 × ( . . )82 5 75 78
24 15
�
�

	        = 275.329º
	        = 275º19'44".

Using the formula for the true longitude of the moon in terms of 
its mean logitude and its apogee, the true longitude of the moon is 

	 �moon � � � � � �� ��
�
�

�
�
�

�

�269 31 3
80

269 31 48 275 19 441
'48" ' " ' "sin sin

2270 037 270 2. � � � '13"

The true daily motion of the moon can be obtained as,

	
�moon � � �
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�
13 17635124

270 2 275 19

1

7
80

7
80

2
2

.
cos( )

sin

'13" '44"

22 270 2 275 19

13 1763512 111364453 12 2
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( . . )
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'13" '44"

'20"

Computation of the Instant of Opposition,  
or the Middle of the Eclipse, tm.
The longitude of the earth’s shadow is: 

	 θc = θs + 180º
	     = 99º29'35"
	     = 279º29'35".

Then, the time interval between 5h29m IST, and the instant of 
opposition in hours is 

	

�t
d dm s

�
� � �� �

�
�

�
� � �
� � �

� �sun moon 180
24

99 29 35 90 213
12 2 20 0

' " ' "

' " 557 5
20 468

' "� �
� . hours.

In this case, as the moon lags behind the shadow, we have:
Instant of opposition, tm = ∆t + Initial time (5h 29m)
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                     = 20.468 + 5.483
                     = 25.951 hours = 25h 57m. 

The instant of opposition obtained is by interpolation. We have to 
compute the longitudes of the sun and the moon at this intsant 
(tm) and check whether they are actually in opposition. If they are 
not, an iteration method would have to be adopted to compute 
the true instant of opposition.

The mean longitude of the sun at tm is. 
	 θ0 sun (tm) = 100º18'32" + 0.985602859 × 20 468

24
.  

	                = 101.150º = 101º9'. 
Therefore the true longitude of the sun at tm is:

	 θsun (tm) = 101º9' − sin− 1 ( 3
80

sin (101º9' − 78º)).

	              = 100º18'18".
The mean longitude of the moon at tm is: 

θ0 moon (tm) = 269º31'48" + 13.17635129 × 20 468
24
.

	           = 280.767º = 280º46'2".
The longitude of the moon’s apogee at tm is: 

θmoon apogee (tm) = 275º19'44" + 0.111364453 × 20 468
24
.

	                  = 275.424º = 275º25'26".
Therefore, the true longitude of the moon at tm is. 

	 θmon (tm) = 280º46'2" − sin− 1 (
7
80 sin (280º46'2" − 270º25'26")).

	                = 280º18'0". 
Hence, we see that θsun (tm) + 180º = 280º18'18", which is very close 
to θmoon (tm) = 280º18'0" already, and we stop here.

The daily Motions of the Sun and the Moon at  
the Middle of the Eclipse, tm

The daily motion of the sun at tm can be obtained as:

�sun � �
� � �

� � � �
0 985602859

101 9 78

1 101 9 78

3
80

3
80

2
2

2
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cos( )

sin (

'
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.� � �0 985602859 0 57'6"
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The daily motion of the moon at tm can be obtained as:

�sun � �
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�
13 17635124
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Latitude of the Moon at the Instant of Opposition,  
or the Middle of the Eclipse, tm

Now to determine the first half duration, we need to know the 
latitude of the moon at the instant of opposition which involves 
the longitude of the moon’s node. Including the dhruva of the 
node, the longitude of the moon’s node at Ujjain at 6 a.m. local 
time corresponding to the ahargaṇa, 1,869,861 is: 

	 θmoon’s node = − A× 232 300
1 577 917 500

,
, , ,

 + 202º20'

	                 = − 275.279734396 revln. + 202º20'
	                 = − 101.704˚ + 202º20'
	                 = 101.629º

Hence, the longitude at 5h29m local time at Ujjain is 
	         = 101.629º + 0.052998968 × 31

24 60×
	         = 101.630º.

Hence, the longitude of the moon’s node at 5h29m IST is: 
	         = 101.630º + 0.052998968 × ( . . )82 5 75 78

24 15
�
�

	         = 101.631º. 
Hence, the longitude of the moon’s node at the middle of the 
eclipse, tm is 

	        θn = 101.631º − 0.052998968 × 
20 468

24
.

	            = 101.586º 
	            = 101º35'10".

Then, the latitude of the moon at the instant of opposition is 
found to be: 
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β (tm) = 270' sin (280º18'0" − 101º35'10")
	    = 6.060'.

First Half-duration of the Lunar Eclipse
The sum of the radii of the earth’s shadow-disk (r1 = 39.96'), 
and the moon’s disk (r2 = 15.75'), r1 + r2 = 55.71'. Hence, the first 
approximation to the first haf-duration of the eclipse is given by: 

	 ∆t1/2 (11) = 55 71 6 060
722 28 57 096

24
2 2. .

( . . )
�
�

�

	                 = 1.998 hrs. = 119.88 min. 
To obtain a more accurate value, an iteration procedure is involved. 
To find the second approximation to the first half duration, 
the longitudes of the moon and its node are found at the first 
approximation to the beginning of the eclipse. The longitude of 
the moon at this instant is: 

	 θm (∆t1/2 (11)) = 280.3º − 1 998
24
.  × 12.038

	                        = 279.298º
Longitude of the moon’s node: 

	 θn (∆t1/2 (11)) = 101.586 + 1 998
24
.  × 0.052998968

	                        = 101.590º
Latitude of the moon: 

	 β = 270' sin (279.298 − 101.590)
	   = 10.80'.

Then, the second approximation to the first half duration is given 
by: 

	 ∆t1/2 (12) = 55 71 10 8
722 28 57 096

24
2 2. .

( . . )
�
�

�

	                 = 1.972 hrs. = 118.32 min.
The successive values of the first half-duration obtained are quite 
close, so we stop here. Therefore the first half duration of the lunar 
eclipse which happened on 27/28 July 2018 is 118.32 min., i.e. 1h58m.
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First Half-duration of Totality 
The difference of the radii of the earth’s shadow-disk (r1 = 39.96'), 
and the moon’s disk (r2 = 15.75'), r1 − r2 = 24.21'. Hence, the first 
approximation to the first haf-duration of totality of the eclipse, 
T (1), is given by: 

	 T (11) = 24 21 6 060
722 28 57 096

24
2 2. .

( . . )
�
�

�

	            = 0.846 hrs. = 50.76 min.
To find the second approximation to the first half-duration of 
totality, the longitudes of the moon and its node are found at the 
first approximation to the beginning of totality. The longitude of 
the moon at this instant is: 

	 θm(T(1, 1)) = 280.300 − 0 846
24
.  × 12.038

		       = 279.876º
The longitude of the moon’s node at this instant is:

	 θn(T(1, 1)) = 101.586 + 0 846
24
.  × 0.052998968

	                   = 101.588º
Latitude of the moon at this instant is:

	 β = 270' sin (279.876 − 101.588)
	    = 08.066'.

Then, the second approximation to the first half-duration is given 
by: 

	 T(12) = 24 21 8 066
722 28 57 096

24
2 2. .

( . . )
�
�

�

	           = 0.824 hrs. = 49.44 min.
The successive values of the first half-duration of totality obtained 
are quite close, so we stop here. Therefore the first half-duration of 
totality of the lunar eclipse, T (1) which happened on 27/28 July 
2018 is 0.824 hrs., i.e. 49.44 min.

Second Half-duration of the Eclipse 
The first approximation to the second half-duration as whole is 
the same as the first approximation to the first half-duration, as 



332  | History and Development of Mathematics in India

β is taken at the middle of the eclipse, and therefore ∆t1/2 (21) = 
∆t1/2 (11) = 1.998 hrs.

To find the second approximation to the second half-duration, 
the longitudes of the moon and its node are found at the first 
approximation to the end of the eclipse. The longitude of the 
moon at this instant is: 

	 θm (∆t1/2 (21)) = 280.300 + 1 998
24
.  × 12.038

	                        = 281.302º.
The longitude of the moon’s node at this instant is:

	 θn (∆t1/2 (21)) = 101.586 − 1 998
24
.  × 0.052998968

	                        = 101.582º.
Latitude of the moon:

	 β = 270' sin (281.302 − 101.582)
	    = 1.319'.

Then, the second approximation to the first half-duration is given 
by: 

	 ∆t1/2 (22) = 55 71 1 319
722 28 57 096

24
2 2. .

( . . )
�
�

�

                       = 2.009 hrs. = 120.54 min.
To find the third approximation to the second half-duration, the 
longitudes of the moon and its node are found at the second 
approximation to the end of the eclipse. The longitude of the 
moon at this instant is: 

	 θm (∆t1/2 (22)) = 280.300 + 2 009
24
.  × 12.038

	                         = 281.308º.
The longitude of the moon’s node at this instant is:

	 θn (∆t1/2 (22)) = 101.586 − 2 009
24
.  × 0.052998968

	                        = 101.582º.
Latitude of the moon: 

	 β = 270' sin (281.302 − 101.582)
	    = 1.291'. 



|  333Lunar Eclipse Calculations in Tantrasaṁgraha

Then, the third approximation to the second half-duration is 
given by: 
	 ∆t1/2 (23) = 55 71 1 291

722 28 57 096
24

2 2. .
( . . )

�
�

�

                                      = 2.009 hrs. = 120.54 min.
The successive values of the first half duration obtained are the 
same (to an accuracy of 0.001 hr.) . Hence, we stop here. Therefore 
the second half-duration of the lunar eclipse as a whole which 
happened on 27/28 July 2018 is 120.54 min, i.e. 2h1m. 

Second Half-duration of Totality
The first approximation to the second half-duration of totality, T(2) 
is the same as the first approximation to the first half-duration of 
totality, as β is taken at the middle of the eclipse, and therefore 
T(21) = T(11) = 50.76 min.

To find the second approximation to the second half-duration 
of totality, the longitudes of the moon and its node are found at 
the first approximation to the end of totality. The longitude of the 
moon at this instant is: 

	 θm (T(2,1)) = 280.300 + 0 846
24
.  × 12.038

	                   = 280.724º.
The longitude of the moon’s node at this instant is

	 θn (T(2,1)) = 101.586 − 0 846
24
.  × 0.052998968

	                  = 101.584º.
Latitude of the moon at this instant is 

	 β = 270' sin (280.724 − 101.584)
	    = 4.053'. 

Then, the second approximation to the second half-duration of 
totality is given by: 

	 T(22) = 24 21 4 053
722 28 57 096

24
2 2. .

( . . )
�
�

�

                 = 0.861 hrs. = 51.66 min.
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The successive computed values of the second half-duration 
of totality differ from each other by only 0.9 min, so we stop here. 
Therefore the second half-duration of totality, T (2) is 51.66 min. 

COMPARISON BETWEEN THE COMPUTED VALUES  
AND THE VALUES OBTAINED IN “RĀṢṬRĪYA PAÑCĀṄGA”  
FOR SOME LUNAR ECLIPSES

In Table 21.5, we compare the various parameters tabulated in 
the condensed Indian ephemeris (Rāṣṭrīya-Pañcāṅga, 2017), and 
the values computed from the parameters and the procedure of 
Tantrasaṁgraha, as above. It is very remarkable that the two sets 
of values are close to each other.

A similar exercise was carried out for the lunar eclipse which 
occurred on 7 August 2017. For this, the Tantrasaṁgraha values and 
the modern values (Rashtriya Panchang, 2016) are compared in 
Table 21.6. Again there is a very remarkable agreement between the 
two sets. This eclipse was partial according to both the computed 
values and the values tabulated in the Rāṣṭrīya-Pañcāṅga.
Table 21.5: Comparison of the Rāṣṭrīya-Pañcāṅga Parameters and those 

Computed from the Procedure described in Tantrasaṁgraha for the 
Total Lunar Eclipse on 27/28 July 2018

Rāṣṭrīya 
Pañcāṅga 

Value

Calculated 
value from 

Tantrasaṁgraha
θsun (Long. of the sun at 5h29m IST on 
27 July 2018)

99º49'30" 99º29'35"

θmoon (Long. of the moon at 5h29m IST 
on 27 July 2018)

270º37'44" 270º2'13"

tm (Middle of the eclipse, w.r.t. the 0h 
IST of 27 July 2018)

25h52m 25h57m

∆t1/2 (1) (First half-duration of the 
eclipse)

118 min 118.32 min

∆t1/2 (2) (Second half-duration of the 
eclipse)

117 min 120.54 min

T1 (First half-duration of totality) 52 min 49.44 min

T2 (Second half-duration of totality) 52 min 51.66 min
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Table 21.6: Comparison of the Rāṣṭrīya-Pañcāṅga Parameters and those 
Computed from the Procedure described in Tantrasaṁgraha for the 

Partial Lunar Eclipse on 7 August 2017

Rāṣṭrīya 
Pañcāṅga 

Calculated 
value

θsun (at 5h29m IST) 110º35'34" 110º13'20"

θmoon (at 5h29m IST) 281º54'23" 281º17'16"

tm (Middle of eclipse) 23h51m 24h

∆t1/2 (1) (First half-duration) 59m 1m

∆t1/2 (2) (Second half-duration) 58m 1m

Concluding Remarks
Indian astronomy texts are noted for their simplified calculational 
procedures for various kinds of variables in general and eclipses 
in particular. Tantrasaṁgraha of Nīlakaṇṭha Somayājī composed in 
1500 ce is one of the major astronomy texts of the Kerala school, 
noted for many advancements including a major modification 
of the Indian planetary model. It had also been noticed that the 
longitudes of the sun and the moon computed from this work 
are fairly accurate (within a degree) even for recent dates. Hence 
it is worhwhile to check whether the eclipse calcuations using 
the Tantrasaṁgraha procedure and parameters are accurate. The 
solar eclipse calculations are very involved, as parallax plays an 
important role in them. Hence, we have confined ourselves to 
lunar eclipse computations only in this paper. We have given all 
the details of the procedure and illustrated it with the explicit 
example of the total lunar eclipse of 27/28 July 2018. We calculated 
the instant of opposition and the two haf-durations of the eclipse as 
a whole and also the two half-durations pertaining to the totality. 
We compared the computed values of these with the values 
tabulated in the Indian national ephemeris (Rāṣṭrīya-Pañcāṅga). 
The agreement is excellent. We performed the calcualtions for 
another eclipse (which was partial) on 7 August 2017. Again 
there is a remarkable agreement between the computed and the 
tabulated values. It would be worthwhile to carry out a detailed 
and systematic study of the accuracy of the Tantrasaṁgraha 
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procedure and parameters for a large number of lunar and also 
solar eclipses with a statistical analysis, to establish its efficacy for 
eclipse-computations. 
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Non-trivial Use of the
“Trairāśika” (Proportionality Principle)

in Indian Astronomy Texts 

M.S. Sriram 

Abstract: For the Indian astronomer-mathematicians, the rule of 
three, which is essentially the proportionality principle, and the 
theorem of the right triangle play a crucial role in the derivation 
of all the results related to the planetary positions and the diurnal 
problems. For instance, in his Grahagaṇita (planetary mathematics), 
a part of his magnum opus, Siddhānta-Śiromaṇi (Crest-jewel of 
the Astronomical Treatises), the celebrated Indian astronomer-
mathematician Bhāskara (twelfth century ce) lists many latitudinal 
triangles (right triangles where one of the acute angles is the latitude 
of the place). Then very many relations which are of relevance to 
the shadow problems and the diurnal problems are derived using 
the similarity of triangles. These are straightforward applications of 
the proportionality principle. However, there are very non-trivial, 
far-from-direct applications of the proportionality principle also in 
Indian astronomy texts. In this article, three examples of these are 
considered. Two of them are considered by Bhāskara: one of them 
is the derivation of a second-order interpolation formula due to the 
great astronomer-mathematician Brahmagupta (seventh century 
ce), and the other is an expression for the part of the equation of 
time due to the obliquity of the ecliptic. The third is a relation 
involving the vākyas (mnemonics) for the longitude of the moon 
on 248 consecutive days. 
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Introduction 
In explaining verse 246 of his Līlāvatī, Bhāskara remarks that, 
just as this universe is pervaded by Lord Nārāyaṇa in all his 
manifestations, “so is all this collections of instructions for 
computations pervaded by the rule of three terms”. The rule of 
three is a very important topic in all Indian mathematical texts. This 
rule and its generalization to rules of five, seven, nine, etc. have 
wide applications in Vyavahāragaṇita (mathematics of (business 
and other) practices), and normally discussed in great detail with 
a large number of examples. It also has very many applications in 
astronomy. For instance, in the chapter on diurnal problems in the 
Grahagaṇita part of Siddhānta-Śiromaṇi, Bhāskarācārya lists eight 
important latitudinal triangles1 in verses 13-17. As these are all 
similar triangles, the sides are in the same proportion in all of them. 
Then, we obtain relations among the various physical quantities of 
importance related to diurnal problems, like the zenith distance, 
hour angle, declination, latitude and azimuth. using the rule of 
three (repeatedly at times). In verse 29 of the Siddhāṅta-Śiromaṇi 
Bhāskara exclaims: 

There are 63 ways of obtaining the pala jyā (Rsin ϕ, where ϕ is 
the latitude), and the lamba jyā (R cos ϕ). From the hundreds 
of ways of obtaining agra jyā (essentially, the distance between 
the rising–setting line and the east–west line), there are infinte 
ways of obtaining the lamba jyā and other quantities (using the 
rule of three).

Most of the applications of the rule of three in Indian mathematics 
and astronomy are somewhat direct and straightforward, as in 
the case of the latitudinal triangles mentioned above. However, 
there are some very non-trivial applications too, which lead to 
significant results. We discuss three such examples in this paper.

The Udayāntara Correction and the Proportionality Principle 
In fig. 22.1, G is the first point of Aries, where the ecliptic intersects 
the equator, P is the pole of the equator and S is the sun. λ = GS 

	 1	 Right triangles with the latitude of the location as one of the acute 
angles.
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is the sāyana (tropical) longitude of the sun, which is measured 
along the ecliptic, and α is the right ascension corresponding to λ, 
measured along the equator. This is the rising time of the ecliptic 
arc λ = GS at the equatorial horizon. Let ∈ be the obliquity of the 
ecliptic (the angle between the ecliptic and the equator) and δ be 
the declination of the sun. Then it can be shown that:

sin sin sin
cos

sin cos
cos

,�
� �

�
�

�
�

�
�

�2 2

where we have used sin δ = sin∈ sin λ for obtaining the second 
expression for sin α. The first expression was stated first in the 
Indian tradition by Śrīpati in his Siddhāntaśekhara (eleventh century 
ce), without any explanation. Bhāskara states both the expressions 
in his Siddhānta-Śiromaṇi and provides the rationale in the upapatti 
for the pertinent verses.

Now λ − α is the part of equation of time due to the obliquity 
of the ecliptic and is termed udayāntara in Indian astronomy. ∈ = 
24° in most Indian texts, which is also the maximum value of δ. 
Then λ − α is never too large. This is exploited by Bhāskara to give 
a simple expression for the udayāntara, λ − α, based on trairāśika 
(rule of three): 

λ − α = 2.6° sin (2λ). 

fig. 22.1: Longitude λ, Right Ascension α, and Declination δ.



340  | History and Development of Mathematics in India

This is how Bhāskara explains it in the upapatti (rationale) for the 
verse 65 of the Siddhānta-Śiromaṇi: 

Upapatti (Rationale): ... Find the Rsine of the longitude (Rsin λ, 
or the dorjyā) and the day-radius (R cos δ or the dyujyā) of the 
tropical mean sun. Divide the dorjyā by the dyujyā and multiply 
by dyujyā at the end of Mithuna (the third zodiacal sign, Gemini). 
The arc of the above in asus2 subtracted from the mean tropical 
longitude of the sun in minutes is the true value of the antara in 
asus. By this is meant the udayāntara. In the middle of the quarter, 
this is slightly more than 26 palas (or vināḍīs). To find it according 
to the Rsine, the (mean longitude of the) sun is doubled. When 
the Rsine of double the sun is found, then it (corresponding arc) 
becomes three signs (90°) at the middle of the quarter. Apply 
the rule of three for 26 and the Rsine (of double the longitude). 
If for a Rsine equal to kharka (120), we obtain a difference of 26, 
what is it for the desired Rsine?

Here, Bhāskara gives a simple, approximate expression for the 
udayāntara correction, using an ingenious intuitive argument based 
on proportionality (Arkasomayaji 2000). 

Now λ − α = 0 when λ = 0 and λ = 90°. Hence λ − α cannot 
be proportional to sin λ3. Bhāskara argues that λ − α would be 
maximum at the middle of the quadrant, that is when λ = 45°. So, 
he proposes that λ − α is proportional to sin 2λ, or, 

λ − α = A sin 2λ, 

where A is a constant. 
Now, sin α = sin cos

cos
�
�
� . ∈ = 24° and sin δ = sin ∈ sin λ. When 

	 2	 Essentially, minutes; however, as it is a time unit, it is termed asus.
	 3	 A word of caution: In Indian texts, only Rsines is used instead of 

the sine function and only arcs are considered instead of the angles. 
The Rsine of an angle is the normal sine of the angle multiplied by 
the radius, R of the circle, which is normally taken to be 21600

2π
 ≈ 3438. 

However, a smaller value of R is also chosen at times. In the present 
context, Bhāskara uses a value of R = 120. In this section, we do not 
include R explicitly in the expressions which follow. Also, the unit 
of “degree” is used for the arcs in the Indian texts.
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λ = 45° we find that α = 42.41°. Therefore, λ − α = 2.59° = A, for 
λ = 45°. Also, 360° = 60 nāḍī = 3600 vināḍī. Hence, 1° = 10 vināḍī.

Hence, for a general λ, 

λ − α = 2.59° sin (2λ) = 25.9 vināḍī sin (2λ). 

Bhāskara uses 2.6° instead of 2.59° and 26 instead of 25.9 vināḍī. 
Here, udayāntara is found directly and the expression for it is far simpler 
than what one would have got by computing α from the expression 
for sin α, finding the arc α from it, and subtracting it from λ.

Explanation of the Second-order Interpolation in 
Bhāskara’s Siddhānta-Śiromaṇi 

FIRST-ORDER INTERPOLATION FOR THE R SINES 

The sine function plays an important role in most calculations in 
spherical astronomy. So, it is important to know the value of the 
sine function accurately for an arbitrary angle. Normally, in Indian 
astronomy texts, the quadrant is divided into 24 equal parts and 
the value of the Rsine is specified for 24 angles which are integral 
multiples of 90

24

° = 3°45'. The value of the Rsine of an intermediate 
angle is determined by linear interpolation which amounts to 
using the rule of proportions. This is how Bhāskara describes it 
in his Siddhānta-Śiromaṇi (Arkasomayahi 2000):

tattvāśvibhaktā asavaḥ kalā vā tallabdhasaṁkhyā gatasiñjinī sā AA10AA
yātaiṣyajīvāntaraśeṣaghātāt tattvāśvilabdhyā sahitepsitā syāt A

When the arc in minutes [corresponding to the desired Rsine] is 
divided by 225, the obtained number (quotient) is the [number 
of] elapsed Rsines. The remainder multiplied by the difference 
between the succeeding and preceding Rsines and divided by 
225, together [with the elapsed Rsine] gives the desired Rsine.

He explains it thus:

Upapatti (rationale): Aren’t the Rsines 24 in number? In the circle, 
a quadrant consists of 5400 minutes. Each of the 24 divisions is 
equal to 225 minutes. Therefore, the elapsed minutes divided by 
225 gives [number of] elapsed Rsines. In the circle, the difference 
of Rsines corresponds to an arc-difference of 225. Then if we 



342  | History and Development of Mathematics in India

obtain the (known) difference of Rsines corresponding an arc-
difference of 225, then what will it be for the remaining minutes? 
The result of this added to the previous Rsine gives the desired 
result (desired Rsine). 

Bhāskara’s upapatti can be understood thus: 
The Rsine table gives the values of the Rsines for angles 

which are multiples of α = 225', i.e. R sin (iα), i = 1, …, 24. For an 
intermediate angle θ, the R sine is found from interpolation. Let 
θ be divided by α. Let the quotient be i and the remainder be Ψ, 
i.e. θ = iα + Ψ, Ψ < 225'. Then Rsin θ − Rsin iα is found from the 
rule of proportions, that is, if the Rsine difference is Rsin [(i + 1)
α] − Rsin iα for an angular difference α, then what is it for an 
angular difference Ψ? The answer is:

R R i R i R isin sin sin sin .� �
� �
�

� �
�� �� ��

�
1

�

From this, Rsin θ is determined. 

BRAHMAGUPTA’S SECOND-ORDER INTERPOLATION 
FORMULA EXPLAINED BY BHĀSKARA 

Implicit in the linear interpolation formula is the assumption that 
the Rsine varies uniformly within each of the twenty-four 225' 
intervals. This is reasonably accurate for most purposes. However, 
many texts, especially the karaṇa ones use larger angular intervals 
for simplicity in computational procedures, with shorter Rsine 

(i + 1) α

fig. 22.2: Rsine of an intermediate angle
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tables. For instance, Brahmagupta uses an interval of 15° (that 
is a sine table with only six entries) in his celebrated karaṇa text, 
Khaṇḍakhādyaka (Sengupta 1934). Bhāskara also uses an interval of 
10° in the Siddhānta-Śiromaṇi (apart from the 225' interval). For such 
large intervals, it is necessary to go beyond linear interpolation. 
It was Brahmagupta who gave the second-order interpolation 
formula for finding trignometric functions for arbitrary angles 
for the first time, in his Khaṇḍakhādyaka. Bhāskara also gives this 
interpolation formula in the Siddhānta-Śiromaṇi and explains it too 
in the upapatti. This involves invoking the proportionality principle 
in a non-trivial manner. We now discuss Bhāskara’s statement of 
the second-sorder interpolation formula and his explanation for 
the same. 

In verse 16 of Spaṣṭādhikāra (chapter on true longitudes), he 
says in the Siddhānta-Śiromaṇi:

yātaiṣyayoḥ khaṇḍakayorviśeṣaḥ śeṣāṁśanighno nakhahr̥t
							             tadūnam A
yutaṁ gataiṣyaikyadalaṁ sphuṭaṁ syāt kramotkramajyākara-
						          ṇetra bhogyam AA16AA

The difference of the preceding and succeeding Rsine differences 
is multiplied by the remaining degrees and divided by 20 
(nakha), and this result subtracted from the arithmetic mean 
of the preceding and succeeding [Rsine differences] gives the 
rectified Rsine difference. In the case of utkrama-jyā or Rversine, 
the result is added (instead of subtracted).

Bhāskara explains it thus:

Upapatti (Rationale): The Rsine difference at the midpoint of 
the preceding and succeeding Rsine differences should be 
their arithmetic mean. The succeeding Rsine difference should 
be at the end of the interval. [Now, use] the rule of three. If for 
an interval of 10°, we have half the difference between the two, 
what should be the difference, for the remainder expressed in 
degrees? Also, by the rule of three, multiply the remainder of 
degrees by the difference between the preceding and succeeding 
Rsines and divide by 20. Subtract the result from the arithmetic 
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mean of preceding and succeeding Rsines, since the differences 
decrease in the case of Rsines, and add the result for Rversines, 
since the differences increase in the case of Rversines.

Bhāskara’s upapatti can be understood thus:
Here Bhāskara gives a second-order interpolation formula for 

an intermediate angle, which is the same as in the Khaṇḍakhädyaka 
of Brahmagupta conceptually (Sengupta 1934). 

Let i · 10 < θ < (i + 1) · 10°, i.e. the point on the quadrant is 
between i · 10° and (i +1)10°. Then Bhāskara defines a “rectified” 
Rsine difference corresponding to the relevant 10° interval. Let

∆i = Rsin (i − 10) − Rsin[(i − 1)10],
be the tabulated Rsine difference corresponding to the 10° interval 
between (i − 1) · 10° and (i − 10°). It is obvious that

∆i +1 = Rsin[(i + 1)10] − Rsin (i · 10).

Then, the rectified Rsine difference ∆'i+1 corresponding to the 
remainder Ψ within the 10° interval between i · 10° and (i + 1)10° 
is defined as 

� �
�

�
�� �

�
� �

�
� � � �

i
i i i i

1
1 1

2 20
� .

Let θ = i · 10 + Ψ. Then Rsin θ obtained using the rectified Rsine 
difference is given by

S
2

S
1

S
0

( +1)10i °

S

�

i . 10°

fig. 22.3: Pertaining to the second-order interpolation formula

 .
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R R i isin sin( ) .� �� � �
�
�10

10
1�

Bhāskara’s reasoning for the expression for the rectified Rsine 
difference is as follows: The Rsine difference for the “previous” 10° 
interval is ∆i, whereas it is ∆i + 1 for the “coming” 10° interval S1S2. 
The Rsine difference at the junction of these two intervals at S1 is 
taken to be � � � �i i 1

2
. The Rsine difference at the end of the interval 

S1S2 is taken to be ∆i + 1 itself. As ∆i + 1 can be written as:

� �
� � �

�
� ��

�
� �

i
i i i i

1
1 1

2 2
.

The change in the Rsine difference over the full 10° interval S1S2 
is given by

� � �
�� �

� ���
�

�i i
i

i i1
1

1

2 2
.

Then the change in the Rsine difference at the desired point S can 
be found from the rule of proportions:

                            
� � �

� �� � �
� ���

�
�i i

i
i i1

1
1

2 10 2
� ,

or

                             �� �
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�
� ��� �

�
� �

i
i i i i

1
1 1

2 20

�
.

which is the stated result.

Here, the Rsine difference at the beginning of the interval 
S1S2 is taken to be � � � �i i 1

2
, which is the mean of two tabulated 

Rsine differences, whereas it is taken to be ∆i + 1, a tabulated Rsine 
difference over the interval i · 10 < θ < (i + 1) · 10°. This is a plausible 
argument. In any case, we have an imaginative use of the rule of 
proportions here. 

Comparison with the Taylor Series up to the Second Order
Writing θ as θ = θ0 + (θ − θ0), where θ0 = i · 10 and Ψ = θ − θ0 and 
using the expression for the rectified Rsine difference, ∆'i + 1 and 
rewriting in a slightly different form, we have: 
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The Taylor series for R sin θ up to the second order is

R R
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d
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So Brahmagupta/Bhāskara’s expression has the same form with 
the arithmetic mean of the R sine differences per unit degree in 
the “previous” and the “coming” intervals,
� �i i R i R i R i R�

�
�
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A Relation among the Moon’s “Vākyas” (Mnemonics) 
Using the Proportionality Principle 

MOON’S LONGITUDE IN THE VĀKYA SYSTEM

In the vākya system of astronomy prevalent in south India, the true 
longitudes of the sun, the moon and the planets can be found at 
regular intervals, using vākyas (mnemonics) (Sriram 2015; Pai et al. 
2016a). These are based on the various periodicities associated with 
these celestial bodies. For example, moon’s anomaly completes 
very nearly 9 revolutions in 248 days, and correspondingly, there 
are 248 candra-vākyas for the moon, which give the longitudes of 
the moon at mean sunrise on 248 successive days, beginning with 
the day at the mean sunrise of which the moon’s anomaly is zero. 
There are more elaborate tables of vākyas for the longitudes of 
planets which involve their zodiacal anomaly, as well as the solar 
anomaly. We are concerned only with the moon’s longitude in the 
vākya system here.

The moon’s true longitude is obtained by applying the 
“equation of centre” to the mean longitude. The equation of centre 
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at any instant depends upon the moon’s “anomaly” which is the 
angular separation between the “mean moon” and the “apogee” 
of the moon. The khaṇḍa-dina is the day at the sunrise of which 
the moon’s anomaly is zero. The candra-vākyas are based on the 
following formula for the change in the true longitude of the 
moon, i days after the khaṇḍa-dina (Sriram 2015; Pai et al. 2016a, b):

		  V R i R ii � � � � � � ��
��

�
��

�
1

1
2360 7

80
360sin sin( ) ,          (1)

where R1 and R2 are the rates of motion of the moon and its 
anomaly respectively, in revolutions per day. The second term 
represents the equation of centre of the moon. As it stands, Vi is 
in degrees. The candra-vākyas are essentially the values of Vi, after 
converting them to rāśis (zodiacal signs), degrees, minutes and 
seconds, and expressed in the kaṭapayādi system.

R1, the mean rate of motion of the moon, is taken to be 
4909031760

134122987500
1

27 32167852
=

.  revolution per day in the texts related to the 
vākya system. It will be seen that the value of R1 does not play any 
role in the relation among the vākyas that we are considering. For 
finding the vararuci-vākyas (mnemonics due to Vararuci (probably 
seventh century ce)), R2 is taken to be 9

248  revolution per day.4 
For the mādhava-vākyas (mnemonics due to Mādhava of Kerala 
(fourteenth century ce), R2 = 6845

188611  revolution per day, used in the 
Veṇvāroha and the Sphuṭacanrāpti composed by Mādhava), which 
is more accurate than 9

248  (Pai et al. 2016b). 

VĀKYAŚODHANA: ERROR CORRECTION CHECKS  
FOR CANDRA-VĀKYAS5 

Vararuci-Vākyas
Substituting the value of R2 = 9

248  in this case,

V R i i1 1
1360 7

80
9

248
360� � � � � � �� ��

��
�
��

�sin sin .

	 4	 This corresponds to 9 revolutions of the anomaly in 248 days. This 
anomaly cycle had been noticed by Babylonian, Greek and Indian 
astronomers of yore.

	 5	 Pai et al. 2016b; Sriram, 2017.
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Hence,
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as the last time in the RHS of the equation for V248 is 0. Clearly, 
		    Vi + V248 − i = V248 (modulo 360°).	             (2)
This implies that if there is any doubt about the value of Vi, this 
relation can be used to find it, if V248 − i is known. Hence, it is termed 
the vākyaśodhana (error correction check for mnemonics (for moon)) 
(Pai et al. 2016b).

Mādhava-Vākyas
In this case, as R2 ≠ 9

248 , the relation (2) clearly does not hold. For 
the mādhava-vākyas, the vākyaśodhana procedure is as follows (Pai 
et al. 2016b): 

Suppose one is in doubt about Vi. Let j = 248 − i. Then, Vj is 
the complementary vākya. If Vj and the vākyas above and below 
it are known, find:

V
V V V

j
j j�
� �� �( )

.1 1 12
225

Then, 

	     V V V
V V V

j ii j
j j� � �
� ��

�
�

�

�
� � �� �

248
1 1 12

225
248

( )
, .              (3)

Note that i = 248 − j. We rewrite the above equation in the form: 

		   � j j j
j jV V V

V V V
� � � �

� �
�

� �
248 248

1 1 1
2

225
.        (4)

We now show that the above relation is valid to a very good 
approximation, using the ubiquitous Indian principle of trairāśika 
or the “rule of three” (Sriram 2017).
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Explanation of the Vākyaśodhana Expression for δj 
Using Trairāśika (Sriram 2017)
We denote the Mādhava value 6845

188611
 for R2 by α. Then,
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Let
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248
360 4 6948 10 4. .

Using this notation in the above equation we have, 
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Let f be the function representing the equation of centre, sin-1[sin 
7
80 ( )], where ( ) is the anomaly. Hence, 
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�� �248 1 around a value of anomaly    (5)

where y1 is the difference in the equation of centre corresponding 
to a change in the anomaly (which is the argument) equal to 

9
248

360 9
248

360 248 248 1� � ���
�
�
�

�
�
� � � � ��� �

�
�
�

�
�
� ��� �j j j j x( ) , = ∈ ⋅ 248 ≡ x1, around a value of 

anomaly equal to 9
248  × 360. j. Note that the change in the anomaly 

which is proportional to ∈ is resulting from the departure of α = 
R2 from 9

248
.

Now consider a different kind of difference:

Vj + 1 – Vj − 1 = R1 ⋅ 360 ⋅ (j + 1) – f (α 360 ⋅ (j + 1))

                     – [R1 ⋅ 360 ⋅ (j – 1) – f (α 360 ⋅ (j – 1))]

Hence, 	   Vj + 1 – Vj − 1 = 2 ⋅ R1 ⋅ 360 – y2,		               (6)
where y2 is the difference in the equation of centre corresponding 
to a change in the anomaly equal to (α ⋅ 360 ⋅ (j + 1)) − (α ⋅ 360 ⋅ (j − 
1)) = 2 ⋅ α ⋅ 360 ≡ x2, around a value of anomaly equal to α × 360 ⋅ j.  
Here, the change in the anomaly is due to the fact that we are 
considering the vākyas for two different days, corresponding to  
j + 1 and j − 1.

 y1 and y2 are the changes in the equation of centre corresponding 
to changes in the anomaly equal to x1 and x2 respectively. Now, 
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we use the trairāśika (the rule of three), or the law of proportions,6 
which plays such an important role in Indian mathematics and 
astronomy:

or 			 

y x y x

y
y
x

x

1 1 2 2

1
2

2
1

: : ,

.

�

� � 		               (7)

Using equations (5), (6) and (7), and the values of x1= ∈ ⋅ 248 and 
x2 = 2 ⋅ α ⋅ 360, we have,
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This is approximated as 1
225

.  Therefore,
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, 		                 (8)

where, 

			   X R f
� � �

��
�1 360 248

2
225( ) . 	              (9)

Now, 

		 f ( )
sin sin( ) . .

��
� � ���

�
� �

�
�� ��248

2
225 1

2
7
80

248 225 1 14491

Hence,
		             X = R1 ⋅ 360 − 1.1449.		              (10)

	 6	 Actually, x1 is the change in the anomaly around 9
248  ⋅ 360 ⋅ j, whereas 

x2 is the change in the anomaly around α ⋅ 360 ⋅ j. As α = 6845
188611

9
248

≈ ,  
we ignore this difference, which will lead to changes of higher order 
in ∈.
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From equation (1),

				     .		      	                

1
1 1

1

7 6845360 sin sin 360
80 188611

360 1.1334

V R

R

−   = ⋅ − ×  
  

= ⋅ − (11)
Comparing equations (10) and (11), we find:
			      X ≈ V1.			                 (12)
Substituting this in equation (8), we have:

		  � j j j
j jV V V

V V V
� � � �

� �
�

� �
248 248

1 1 12
225

,            (13) 

which is the desired result.
It is very significant that such a highly non-trivial relation 

among the candra-vākyas (moon’s menmonics) can be derived by 
a judicious application of trairāśika (rule of three). 
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Śuddhadr̥ggaṇita
An Astronomical Treatise from Northern Kerala 

Anil Narayanan 

Abstract: The present paper analyses a modern Keralite 
astronomical work – Śuddhadr̥ggaṇita. This treatise written 
in Sanskrit, authored by V.P.K. Potuval, has been published 
from the Jyotisadanam of Payyanur, Kerala. The present paper 
discusses the methods therein to find the Kali epoch and the 
mean position of a planet. It summarizes how Śuddhadr̥ggaṇita 
serves in maintaining the continuity of the tradition of the Kerala 
school of astronomy and mathematics.

Indian mathematics encompasses the era of the Kerala School 
of Mathematics. The Kerala School of Mathematics flourished 
between fourteenth and eighteenth century. During this age, Kerala 
immensely contributed to the field of mathematics. It is justifiably 
claimed as the golden period in the history of Indian mathematics 
(Parameswaran 1998: iii). To our knowledge, the guru–śiṣya 
paramparā of the Kerala School of Mathematics commences from 
Saṅgamagrāma Mādhava1 (1340–1425 ce). His decisive steps 

	 1	 For more details on the contribution of Mādhava, refer Sarma 1972: 15-
17; Bag 1976: 54-57; Gold and Pingree 1991; Gupta 1973, 1975, 1976, 1987, 
1992 and Hayashi, Kusuba, Yano 1990, etc.
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were followed by Vaṭaśśeri Parameśvaran Nampūtiri2 (1360–1455 
ce), Dāmodara3 (1410–1520 ce), Keḷallur Nilakaṇṭha Somayājin4 
(1444–1545 ce), Jyeṣṭhadeva5 (1500–1610 ce), etc. In attempting to 
solve astronomical problems, the Kerala School of Mathematics 
independently created a number of important mathematics 
concepts. Many of the findings of the Kerala School of Mathematics 
anticipated the discoveries of mathematicians like James Gregory, 
Newton and Leibnitz. However, the discoveries of the Kerala 
School of Mathematics were “re-discovered” very late and thanks 
to the painstaking efforts of T.A Saraswati Amma,6 K.V. Sarma,7 
C.T. Rajagopal, K. Mukundamarar (Rajagopal and Rangachari 
1978, 1986), etc. for their valuable contributions. K.V. Sarma has 
rightly evaluated that the spirit of enquiry, stress on observation 
and experimentation, concern for accuracy, researcher’s outlook, 
and continuity of tradition are some of the salient features of the 
Kerala School of Mathematics (1972: 7-10). Apart from the aforesaid 
characteristics, one of the hallmarks of the Kerala tradition is the 
periodical revision of systems of computations. Many astronomers 
and mathematicians of the Kerala School of Mathematics 
introduced refinements and improvements on the methods of 
calculations, and it indeed paved the way for the development of 

	 2	 For more details on the contribution of Parsmeśvara, refer Gupta 
1977, 1979; Plofkar 1996; Raja 1963.

	 3	 Dāmodara was the son of Parameśvara. No full-fledged work of 
Dāmodara has come to light. Somayājin has quoted Dāmodara on 
many occasions in his Āryabhaṭīya commentary.

	 4	 For more details, on the contribution of Nīlakaṇṭha, refer Hayashi 
1999; Roy 1990; Sarma, Narasimhan and Somayāji 1998.

	 5	 Suggested readings for Jyeṣṭhadeva are Sarma 2008; Divakaran 2011; 
Sarma and Hariharan 1991. 

	 6	 For more details, ref. https://www.insa.nic.in/writereaddata/
UpLoadedFiles/IJHS/Vol38_3_8_Obituary.pdf. 

	 7	 K.V. Sarma has authored sixty books and 145 research papers. The 
complete bibliography of the writings of K.V. Sarma on Indian culture, 
science and literature has been compiled and published from Sri 
Sarada Education Society Research Centre, Adayar, Chennai, in 2000.
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the twin disciplines – astronomy and mathematics. The present 
paper addresses the feature of continuity of astronomical/
mathematical tradition in north Kerala by examining a modern 
manual, called Śuddhadr̥ggaṇita8, into account. 

Continuity of Tradition and Periodical Revision
in North Kerala in the Medieval Period
Kerala astronomers and mathematicians adhered to the 
Āryabhaṭīyan system and followed the Āryabhaṭīya. The 
Kerala School of Mathematics has produced a large number of 
commentaries on the Āryabhaṭīya.9 But at the same time, they were 
also deeply engaged in revising, supplementing and correcting 
the Āryabhaṭīyan system for more accurate results. The systems 
of computations were revised periodically. One of the significant 
events in the annals of Kerala astronomy is the revision of the 
Āryabhaṭīyan system of calculation by Haridatta (c.683 ce). 
Through his works, the Grahacāranibandhana (a digest on the 
motion of the planets) (Sarma 1954) and the Mahāmārganibandana 
(a digest of extensive full-fledged astronomy) (Sarma 1954: 5), 
Haridatta promulgated the parahita system of calculation. Tradition 
(Parameswaryyar 1998) holds that the system was proclaimed on 
the occasion of the twelve-year Māmāṅkaṁ (Skt. Mahāmāgham) 
festival, at Tirunavaya in north Kerala in 683 ce. These corrections 
were called bhaṭasaṁskāra (corrections to Āryabhaṭa). It was also 
called śakābdda-saṁskāra since it applied from the date of Āryabhaṭa 
in the Śaka year 444, at which date his constants gave accurate 
results. The Bhaṭasaṁskāra specifies that for every completed year 
after Śaka 444, a correction in minutes (kalā) − 9/85, − 65/134, − 

	 8	 This twentieth-century astronomical work authored by V.P.K. Potuval 
from the Payyanur, Kannur, north Kerala. The text has been published 
with an autocommentary in Malayalam.

	 9	 Parameśvara’s commentary (available at https://ia800208.us.archive.
org/1/items/aryabhatiyawithc00arya/aryabhatiyawithc00arya.
pdf), Keḷallur Nilakaṇṭhasomayaji’s comm.(available at https://
ia601902.us.archive.org/28/items/Trivandrum_Sanskrit_Series_
TSS/TSS-101_Aryabhatiya_With_the_Commentary_of_Nilakanta_
Somasutvan_Part_1_-_KS_Sastri_1930.pdf etc. are notable.
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13/32, + 45/235, + 420/235, − 47/235, − 153/235, + 20/235 should 
be made to the mean positions of the moon, moon’s apsis, moon’s 
node, Mars, Mercury, Jupiter, Venus and Saturn respectively (ibid.). 
Haridatta also advocated that no correction is necessary in the case 
of the sun (ibid.). Inspired by the works of Haridatta, during later 
times, treatises like the Grahacāranibandhanasaṁgraha (Sarma 1954: 
App.) were composed. Through the course of years, the results 
of computation began to differ appreciably from those of actual 
observation. This necessitated corrections to the parahita system 
and Vaṭaśśeri Parameśvaran Nampūtiri (henceforth Parameśvara) 
was prompted to compose his magnum opus the Dr̥ggaṇita. The 
revealing statements of Parameśvara at the very outset of his work 
are as follows: 

(The positions of) planets derived according to the parahita 
(system of computation) are found to be different (from their 
actual positions) as seen by the eye. And, in the authoritative 
texts (śāstra) it is said that (only) positions as observed (should 
be taken) as the true ones. (The positions of) the planets are 
the means of knowing the times specified for (the performance 
of) meritorious acts. (Here), times calculated from incorrect 
(positions of) planets will not be auspicious for those acts. 
Hence, efforts should be made for knowing the true (positions 
of) planets by those who are learned in the sciences and by those 
who are experts in spherics.10

The Dr̥ggaṇita of Parameśvara has two parts and the first part 
consists of four sections called paricchedas. The method of calculation 
of days elapsed in the Kali epoch and the methods for the computation 

	 10	 Translation by K.V. Sarma of the verses: 

n`';Urs fogxk n`"VÔk fHkÂk ijfgrksfnrk%A
çR;{kfl¼k% Li"Vk% L;qxzZgk% 'kkL=ksf"orhsfjre~AA

lRdeksZfnrdkyL; xzgk fg Kkulk/ue~A 

vLi"VfogxS% fl¼% dky% 'kq¼ks u deZf.kAA

;s rq 'kkj=kfonLr}n~ xksy;qfDrfon ÜÓ rS% A

LiqQV•spjfoKkus ;Ru% dk;ksZ f}tSjr% AA
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of the mean positions of the planets are discussed in the first 
pariccheda. The position of the mean planets at the commencement 
of the Kali epoch have been discussed in the second pariccheda. 
The computation of the true position of planets is dealt with in the 
third, and the fourth pariccheda is on the derivation of the sine of 
arc of anomaly and commutation (manda-jyā and śīghra-jyā) and 
on the method for the calculation of the arc from the sine. The 
second part of the text appears to be a reiteration of part one. But 
the difference is that the reiteration is done by making use of the 
kaṭapayādi system.11 The author himself has stated that the purpose 
of reiteration is “for the benefit of young learners”.12 As the results 
obtained in the Dr̥ggaṇita system was found more accurate, it was 
used for horoscopy (jātaka), astrological queries (praśnas) and for 
the computation of eclipses (grahaṇa), whereas the use of parahita 
was confined to only fixing the auspicious time for rituals and 
ceremonies (muhūrta). 

 Traditional astronomers and astrologers of north Kerala 
followed the parahita system for their calculations up to the first 
three decades of the twentieth century. Then, some revolutionary 
changes took place. Optical instruments like telescope became 
common for observation. These instruments are of great use for 
observing remote planets by collecting electromagnetic radiation 
such as visible light. With the help of telescopes and artificial 
satellites, the positions of planets were located more accurately. 
Hence, it was felt by the traditional astrologers that the positions of 
planets as given by modern science (with the help of satellites, etc.) 
can be taken into account and further calculations can be carried 
out in the traditional manner itself. This resulted in the advent of 
a new system of computation called Śuddhadr̥ggaṇita.13 In Kerala, 

	 11	 For more details and applications of the kaṭapayādi system, see 
Narayanan (2013).

	 12	 Li"Vhdrq± ǹXxf.kra o{;s dVi;kfnfHk% A mÙkQeFksZ ijfgra ckykH;klfgra p rr~ AA 	
	  		      µ n`Xxf.krEk~] f}rh;ks Hkkx%] çFke% 'yksd%

	 13	 In the Indroduction of Śuddhadr̥ggaṇita, it is stated that the 
system of Śuddhadr̥ggaṇita was first suggested by a north Indian, 
Veṅkateśaketakara, through his work Jyotirgaṇita (Śaka 1812).
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Puliyur Purushottaman Namputiri,14 K.V.A. Ramapotuval15 and 
V.P.K. Potuval16 took initiatives for implementing the system of 
Śuddhadr̥ggaṇita. Among these three, it was V.P.K. Potuval who 
first introduced the system in northern Kerala by composing the 
work called Śuddhadr̥ggaṇita. 

Types of Astronomical Manuals and 
the Nature of Śuddhadr̥ggaṇita 
E. Sreedharan, in his Introduction to Śuddhadr̥ggaṇita, has 
mentioned about the different types of astronomical manuals. All 
the primary astronomical manuals can be grouped into four classes 
or types. The first class consists of the Siddhānta texts. These 
types of texts include very long procedures for computations. 
For calculating the mean position of planets, computations have 
to be done from the starting date of the first kalpa and need to 
be carried over to the desired date.17 Most of the ancient texts 
like the Brāhmasphuṭa-Siddhānta and Siddhānta-Śiromaṇi come 
under this class. The second class of texts is called Tantra texts in 
which calculations from the current yuga up to the desired date 
are necessary to derive the mean position of planets. Hence, the 
calculations prescribed by Tantra texts is simpler compared to the 
Siddhānta texts. Texts like the Āryabhaṭīya, Tantrasaṁgraha and 

	 14	 Puliyur suggested the system through his work Gaṇitanirṇaya and 
the text was used in the southern Kerala.

	 15	 Through Gaṇitaprakāśikā, K.V.A. Potuval suggested the system and 
it gained popularity in northern Kerala.

	 16	 V.P.K. Potuval is the author of the text Śuddhadr̥ggaṇita. The text 
was composed in 1978 ce. Potuval hails from the Payyannur area of 
Kannur – a north Kerala district. Apart from Śuddhadr̥ggaṇita, he has 
another work called Sūkṣmadr̥ggaṇitasopāna to his credit. He presented 
his Śuddhadr̥ggaṇita scheme of computation in an august assembly of 
astronomers and astrologers at Ayodhyā and was awarded the title 
Jyotirbhūṣaṇam.

	 17	;fLeu~ dYiknsjkjH; xrkCneklfnukns% lkSjlkoupkUæekukU;oxE; lkSjlkouxrkgXkZ.kkuka 
eè;eknhuka p deZ mP;rs] rr~ fl¼kUry{k.ke~ bfr dsrdhxzgxf.krHkk";e~ AA
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Yuktibhāṣā, are examples of the Tantra type of texts.18 The third class 
is known as the Karaṇa texts. Here, for finding the mean position 
or for finding the Kali epoch, the calculations are carried over 
from a karaṇārambhadina (which will be suggested by the author) 
to the desired date. Hence, practically the simplest method of 
calculation is the one suggested in the Karaṇa type of texts. The 
Khaṇḍakhādyaka, Karaṇakutūhala, etc. are Karaṇa type of texts.19 
Most of the texts produced by the Kerala School of Mathematics 
are Karaṇa texts. The Grahacāranibandhana, Dr̥ggaṇita Pañcabodha, 
Ṣaḍratnamālā, Karaṇapaddhati, Jyotiṣśāstrasubodhinī, etc. come under 
the Karaṇa class. The fourth class is known as Vākya texts, in 
which mnemonics are organized into tables. So, a person without 
much knowledge of mathematics can find planetary positions, 
without doing much calculations. The Vararūcivākya, Vākyakaraṇa, 
Kujādipañcagrahavākyas, etc. are examples of the Vākya class of 
texts. As SDG suggests a karaṇārambhadina for calculations, it is 
Karaṇa type of text.

 Topics such as finding the ahargaṇa (Kali epoch), finding the 
mean position of planets, finding the true position of planets, are 
generally discussed in the Karaṇa type of texts. As stated, they 
also provide a karaṇārambhadina (a date, starting from which all 
the calculations are carried over) and the position of planets at a 
specified date and at a specific time (which are known as dhruvakas). 

Parameters Used in Śuddhadr̥ggaṇita 
Śuddhadr̥ggaṇita, being a Karaṇa type of text, suggests methods for 
finding the Kali epoch, mean position of planets, true position of 
planets, etc. by providing a karaṇārambhadina. Karaṇārambhadinas 
provided by the Karaṇa texts are in order to make the calculations 
easy. The karaṇarambhadina suggested by Śuddhadr̥ggaṇita is the 
Independence day of our country, i.e. 15 August 1947, and the 
desired time given is the sunrise of the same day. The calculations 
and positions of planets provided in Śuddhadr̥ggaṇita are in 
accordance with the place Trivandrum, the capital of Kerala 

	 18	oRkZeku;qxknsOkZ"kkZ.;so KkRok mP;rs] rr~ rU=ke~ AA

	 19	orZeku'kdeè;s vHkh"VfnuknkjH;So KkRok mP;rs rr~ dj.ky{k.ke~ AA
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(having a longitude of 77°E). Hence, it should be noted that the 
position of planets at a longitude 77°E on 15 August 1947 at sunrise 
are directly provided in Śuddhadr̥ggaṇita. These mean positions 
of planets on a desired date and at a desired time suggested by 
Karaṇa texts are called dhruvakas. To get the positions of planets 
at any other date, time and place, further calculations have to be 
carried out. 

Śuddhadr̥ggaṇita on Finding the Kali Epoch 
Suppose one has to find the kali-dina-saṅkhya of any day, say the 
1st day of the month of Siṁha in the Kollam20 year 1175 (i.e. 17 
August 1999, Tuesday).

Then according to Śuddhadr̥ggaṇita, one has to proceed as 
follows:21 
Step 1: Multiply the Kollam year (to which the Meṣa month of the 
target date belongs) with 365 – i.e. 1174 × 365 = 4,28,510. This result 
is known as diavasa-saṅkhyā. 
Step 2: The Kollam year is multiplied by 10 and divided by 39, 
and the result is added to the obtained divasa-saṅkhya – i.e. (1174 
× 10)/39 + 428,510 = 428,811. 
Step 3: The number 1,434,007 is added to the final result obtained in 
step 2, i.e. 428,811 + 1,434,007 = 1,862,818. This will be the ahargaṇa of 
the 1st day of Meṣa (Aries) of the Kollam year we have considered. 
Step 4: The number of days elapsed after the 1st day of Meṣa up 
to the target date is added to the result in step 3, i.e. 125 is added 
and hence the answer is 1,862,943. 

Hence, according to Śuddhadr̥ggaṇita, 1,862,943 is the kali-dina-
saṅkhya of 1st day of Siṁha month, 1175. 

	 20	 The Kollam (Kolamba, Skt.) year commenced from 15 August 824 ce. 
For more details, see Sarma 1996.

	 21	dksyEco"kkZfgrekrfy% (365) L;kr~ dksyEcrks /wfy (39) ârSuZ; (10) ?ukr~ A fnuS'Pk 
lsuk&uo&xw<;kuS (14300007) ;qZrksPNokjkr~ fdyokljkS?k% AA 

				         – Śuddhadr̥ggaṇita, xzgeè;eçdj.ke~ ] dkfjdk û
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Śuddhadr̥ggaṇita on Finding the Mean Position of Planets 
Let us now analyse the method of finding the mean position of Sun 
as suggested by Śuddhadr̥ggaṇita. The following steps are involved 
in the calculation. 

Finding the mean position of the sun as elucidated by 
Śuddhadr̥ggaṇita:
Step 1: At first, find the difference between the two ahargaṇas, i.e. the 
ahargaṇa (kali-dina-saṅkhyā) of karaṇārambhadina and the ahargaṇa 
of the desired date. The result obtained is known as khaṇḍaśeṣa 
Step 2: This khaṇḍaśeṣa is multiplied by 11 and divided by 764 to get 
the bhāgādi (bhāga means degree so the result should be in degree, 
minute and second). 
Step 3: The bhāgādi (obtained in step 2) is subtracted from khaṇḍaśeṣa. 
The result is known as the prathama phala of sūryagati. 
Step 4: Khaṇḍaśeṣa is divided by 2,374 and the quotient is known 
as dvitīya phala which will be in kalādi (minute, second and arc 
seconds). 
Step 5: The prathamaphala obtained in step 3 and dvitīyaphala 
obtained in step 4 is summed up and sūryagati phala is found out 
from this sum. 
Step 6: The sūryagati phala obtained in step 5 is added with the 
sūryasphuṭa of karaṇārambhadina which will give the mean position 
of the sun (at Trivandrum) at sunrise on the target date. 

 Now, suppose one has to find out the mean position of the 
sun on a desired/target date, say the 1st day of the month Siṁha, 
in the Kollam era 1175. Then, according to Śuddhadr̥ggaṇita: 
Step 1: The difference between the ahargaṇas of karaṇārambhadina 
and the desired date has to be found out. 
The ahargaṇa of the desired date (1st Siṁha of 1175) = 1,862,942. The 
ahargaṇa of karaṇārambhadina (15 August 1947) = 1,843,947.
Their difference is 1,862,942 − 1,843,947 = 18,995; which is known 
as khaṇḍaśeṣa.
Step 2: The khaṇḍaśeṣa is multiplied by 11 and divided by 764 to 
get the bhāgādi.
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18,995 × 11/764 = 273 degrees 29 minutes 18 seconds.
Step 3: The bhāgādi (obtained in step 2) is subtracted from khaṇḍaśeṣa. 
	 18,995 deg. 00 min. 00 sec. — 
 	      273 deg. 29 min. 18 sec.	 ————————————
	 18,721 deg. 30 min. 42 sec., which is known as the prathama  
	 phala of sūryagati.
Step 4: The khaṇḍaśeṣa is divided by 2,374 and the quotient is known 
as dvitīya phala (which will be in kalādi/minutes)
18 995
2 374

0,
,

=  minutes 08 seconds 00 arc seconds.

Step 5: The prathama phala and dvitīya phala are summed up and 
the sūryagati phala is found out from this sum.
	 18,721 deg. 30 min. 42 sec. +
	           0 deg. 08 min 0 sec.
	 ———————————
	 18,721 deg. 38 min. 42 sec. 1 deg. 38 min. 42 sec. (as 18,720 
is exactly divisible by 60). 
Step 6: The sūryagati phala obtained in step 5 is added with the 
sūryasphuṭa of karaṇārambadina, which gives the mean position of 
the sun on the desired date. 
The sūryasphuṭa of karaṇārambadina is provided by Śuddhadr̥ggaṇita 
by the phrase mābandhuśrīdharolaṁ22 (which in kaṭapayādi 
corresponds to 3 rāśi 29 deg. 29 min. 35 sec.)
	 0 rāśi 01 deg. 38 min. 42 sec.  + 
	 3 rāśi 29 deg. 29 min. 35 sec.
	 ——————————————
	 4 rāśi 01 deg. 08 min. 17 sec.; which is the mean position 
of the sun on 1st Siṁha 1175 at sunrise at Trivandrum.

	 22	 The grahasphuṭas in karaṇārambhadina are given in Śuddhadr̥ggaṇita by 
the verse:

		  ekcU/qJhj/jksya ef.kp;nuqx% lfUu/kfofUnjsUnks% iq.;kfHkKks euq";LriufgedjksPpksjxk.kka 

èkzqok L;q% A HkwikyEcksejK% •fux.kiqjx% iq.;rÙoksu;kFkhZ çkKkpkjkRe;ksxh dquourdqyks 

HkkSer'pk=k lw{ek% AA
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Conclusion
The methods of finding the kali-dina-saṅkhyā and the mean 
position of planets were among the major subjects of discussion 
in the Keralite astronomical texts.23 For example, the seventh-
century text Grahacāranibandhana of Haridatta had discussed the 
method of finding kali-dina-saṅkhyā and the mean position of 
planets. Later, in the fourteenth century, the Dr̥ggaṇita of Vaṭaśśeri 
Parameśvaran Nampūtiri, also discussed the method of finding 
kali-dina-saṅkhyā24 and the methods of finding the mean positions. 
But each time when these methods were promulgated, there was 
some novelty and this novelty does not lie in the methodology. 
Rather, the novelty lies in the revision of astronomical constants. 
As the position of planets derived according to some specified 
system of computation was found to be different from their 
actual positions, different texts and systems of computations 
were produced in Kerala periodically. Thus, the contributions of 
texts like Śuddhadr̥ggaṇita do not lie in the enunciation of any new 
working methodology but on the periodical revision of different 
astronomical constants. As has been discussed, Śuddhadr̥ggaṇita 
being a Karaṇa type of text, made the computations easier by 
suggesting new astronomical constants. Thus, by suggesting new 
multipliers and divisors for the derivation of days in the Kali epoch 
for the calculation of mean position of planets and by revising 
the systems periodically, Śuddhadr̥ggaṇita serves to maintain the 
continuity of the Kerala tradition of astronomy and mathematics. 

	 23	 Even non-Keralite works have also discussed kali-dina-saṅkhyā-nayana. 
e.g. Śrīpati (eleventh century ce), in his work Siddhāntaśekhara, has 
discussed seven different methods for finding the kali-dina-saṅkhyā. For 
more details refer the Śekharavaiśiṣṭyam, Ramakrisha Pejjathaya, SMSP 
Sanskrit Research Centre, Udupi, pp. 33-36, 2002.

	 24	 'kkdkCnku~ uouxDqQf=kfHk;qZrku~ (ýû÷ù) Hkw"kMfC/fo/qfugrku~ (ûþöû)		
futuxlIru•kEcfq/(þüú÷÷)Hkkx;qrkufC/(þ)fHkgZjssyC/e~ AA

	 	|qxq.kks eè;s fo"kqofr Hk`xqlqrokjksn;kfn% L;kr~ A
		 fnol};su ghu% iquLrq l% LiqQfVo"kqofr L;kRk~AA

		 pk=kkfnfrfFklesrks fo"kqfofÙkfFkfojfgr% l ,o iqu% A
		 frfFk"k"VÔa'kfoghuks |qxq.kksHkh"Vs fnus Hkofr AA – Dr̥ggaṇita, vv 7-9
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eqjfy% ,l~ 

f=kLdU/:is.k foHkkfxrs vfLeu~ T;ksfr"ks egk'kkL=ks v;a xf.krfo"k;% lçek.ka lqLi"Va p 
mifn"V% orZrsA laLÑrokÄ~e;s xf.krL; ewya T;ksfr"k'kkL=ka HkofrA T;ksfr"ks fo|ekuL; 
fl¼kUrLdU/L;So vija uke xf.krfefrA rnqDra HkkLdjkpk;Zs.k fl¼kUrf'kjkse.kkS &

fl¼kUr% l mnkârks¿=k xf.krLdU/çcU/ks cq/S%A bfrA

,o×k~p fl¼kUrxzUFks dkyk/kfjrk% fopkjk% ç/kur;k fopfjrk% orZUrsA rnqDra 
HkkLdjkpk;sZ.k A 

=kqVÔkfn çy;Urdkydyuk ... bfrA

v=kksDr dkyL; ,oa xf.krL; p d% lacU/% dkys xf.kra dFka Hkofr bfr 
vfLeu~ dkyfu:i.k fo"k;s fopkj;ke%A dy;fr bfr dky%A vFkkZr~ x.k;fr 
bR;FkZ%A ;Fkk O;kdj.ks v{kjk.kka çfØ;kç;ksxkfn n'kkHksnk% lfUrA rFkk v=kkfi 
çfØ;k çfØ;kiQyfefr orZrsA xf.krsu fu"iUua iQya ,o dky%A çfØ;ka fouk 
dkyL; çfriknua drq± u 'kD;rsA rn`'k% v;a dky% }s/k foHkT;rsA egkdky% 
•.Mdky% bfrA egkdky% fuR;% foHkq% vuUr% p HkofrA O;kogkfjd% •.Mdky% 
laoRljeklkn;%A yksds ;kfu oLrwfu dkfnykUr:is.k O;ofß;Urs rkfu vfr'k;ksDrkfu 
vlk/kj.kkfu p HkofUrA mnkgj.kkFk± rq dkyh nsork lÄ~dYi%A dkfnykUrinsu 
O;ofß;ek.kk ,"kk egkek;k lokZ/kje;h ,oa loZçk.k/k=kh p HkofrA loZs¿fi nsork% 
rka LrqRok ,o yksdj{k.ks çorZUrsA fda cgquk euq";k% vfi ;nk Lothoua ijk/hua 
orZrs vFkok nqHkkZX;'kkfyu% ok HkofUr rnk dkfnykUra dkyeso dkj.ka bfr fpUr;fUrA 
,oa fofHkUu egRo;qDr dkyksins'kkoljs l;Zfl¼kUrs lw;k±'kiq#"k% onfrA
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n|ka dkykJ;a Kkua xzgk.kka pfjra egr~ bfrA

,oefi

yksdkukeUrÑr~ dky% dkyks¿U;% dyukRed%A
lf}/k LFkwylw{eRokr~ ewrZ'pkewrZ  mP;rsA

vFkkZr~ loZyksdkuka fu.kZ;Ñr~ dky% egkdky% vewrZ% ,d ,o%A dyukRed%  
vFkok x.kukReddky% ewrZ% dky% f}rh;%A ,rkn`'k% dyukRed% dky% }s/k 
HkofrA rnqP;rs lw;Zfl¼kUrs

ç.kkfn% dfFkrks eqrZ% =kqVÔk|% vewrZlaKd% A
"kfM~Hk% çk.kS% foukMh L;kr~ rr~ "k"VÔk ukfMdk Le`rk AA

çk.kkn;% x.kukgkZ% O;ogrq± ;ksX;k% ewrkZ% LFkwyk% p HkofUrA =kqVÔkn;% dkyk% 
x.kukgZs¿fi O;ogrq± vugkZ% vewrkZ% p HkofUrA rkn`'kdkykLrqA 

lwP;k iÁi=kHksnudky% =kqfV% bfr vfHk/h;rsA

öú	 =kqVÔ% û js.kq%	 û@ÿúúþ lsd.M
	öú 	js.ko% û yo%	 û@øúú lsd.M
	öú 	yok% û yh{kdEk~	 û@ûÿ lsd.M
	öú	 yh{kdkfu û çk.k%	 þ lsd.M 

ewrkZ% LFkwydkykLrq

	ö 	 çk.k% û foukfMdk	 üþ lsd.M
	öú 	foukfMdk û ukfMdk	 üþ fefuV 

	 lkfèkZf}ukfMdk	 û  goj

ýú	 ukfMdk û vg% ýú ukfMdk jkf=k% vgksjk=ke~ ,d% fnue~ 
	÷	 fnukfu 	 û lIrkg%
	ü	 lIrkg% llfU/%	 û i{k%
	ü	 i{k%	 ,d% ekl%
	ü	 ekl%	 û ½rq%
	ý	 ½ro%	 û v;uEk~
	ü	 v;ue~ û euq";laoRlj% ,da nsofnue~ 
	ýöú	euq";laoRljk% ,d% nsolaoRlj%
	þøúú nsoo"kkZf.k	 Ñr;qxEk~
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ýøúú nsoo"kkZf.k	 }kij;qxEk~
üþúú  noso"kkZf.k	 =ksrk;qxEk~
ûüúú nsoo"kkZf.k	 dfy;qxEk~
ûüúúú nsoo"kkZf.k	 û egk;qxEk~
÷û egk;qxkfu	 û eUoUrjEk~

	 ûþ euo% ùùþ egk;qxkfu ö egk;qxkfu lfU/%
	 ûúúú egk;qxkfu ,d% czãdYi% ,da czkãa fnuEk~

czã.k% ijek;q% 'krfefr lw;Zfl¼kUrsA

v/k±'k% xr%A o;a czã.k% f}rh;s ijk/Zs v"Vk¯o'kfrres dykS ;qxs oSoLors eUoUrjs 
thoke% bfr x.kuk orZrsA bnkuhUru dkyO;ogkjlaKk goj bR;k[;a vkÄ~xyina 
vfrçfl¼a orZrsA rnLekda laLÑrs fo|ekugksjkinknsokxrefLrA

lk/Z};ukfMdk ,dk gksjk HkofrA gksjk uke ,d gojA vgksj=ks ,o ,"kk gksjk 
vUrHkZofr bR;r% vgksjk=k'kCnkr~ gksjk'kCnL; fu"ifÙka dka{kekuk% nSofon% iwokZij& 
o.kZyksisu gksjk'kCna fu"ikn;fUrA rnq[ua fefgjs.k – gksjsR;gksjk=kfoyiesds ok×k~NfUr 
bfrA

=k;% eklfo'ks"kk yksdO;ogkjs çfl¼k% lfUrA rs lkouekl% lkSjekl% pUæekl% bfrA

lkouekl%

mn;knqn;kUra fg lkoua fnufe";rsA r}r~ buksn;};kUrja rndZ lkoua fnue~ bfr 
lkoufnufuoZpua n`';rsA lq;kZsn;kr~ lw;kZsn;i;ZUra lkoua fnua HkofrA f=ka'kr~ 
lkoufnukfu ,d% lkouekl%A lkoueklL; laKk yksds u n`';rsA

lkSjekl%

"k"VÔf/d ̄ =k'kr~ HkkxkReds Hkx.kpØs lw;ZL; ,dHkkxkHkksxdky% ,da lkSja fnua HkofrA 
f=ka'kr~ HkkxkiwfrZdkys ,djkf'kiwfrZ% Hkofr rnso lkSjekl%A lq;ZlaØkfUr};kUroZfrZdky% 
lkSjekl%A lkSjeklk% jkf'kukfEu çfl¼k% es"kkn;% }n'keklk%A

pkUæeklk%

lw;kZpUæelks% vUrja }kn'kHkkxkRed% dky% frfFk%A ,da pUæa fnua HkofrA frFk;% 
'kqDys cgqys p i×k~pgn'kfnukfuA vkgR; ýú fnukfuA vekUr};kUroZfrZdky% ,d% 
pkUæekl%A 'kqDyçfrinkr~ çkjH;rsA pkUæeklk% vfi }kn'kA pS=koS'kk•kn;% çfl¼k%A

bfr dkyfu:i.klaçnk;fooj.ka çksDra HkofrA





25

Some Constructions in 
the Mānava Śulbasūtra

S.G. Dani

Abstract: The Mānava Śulbasūtra, while less sophisticated than the 
other Śulbasūtras, is seen to contain some mathematical ideas and 
constructions not found in the other Śulbasūtras. Here we discuss 
some of these constructions and discuss their significance in the 
overall context of the Śulbasūtra literature.

Introduction
Among the works from the Vedic period that have come down to us, 
the Śulbasūtras constitute a major source enabling understanding 
of that time concerning the mathematical aspects. Śulbasūtras were 
composed in aid of the activity around construction of agnis and 
vedīs (fireplaces and altars) for performance of the yajñas which, it is 
needless to add here, had a very important role in the life of the Vedic 
people. The Vedic community was fairly heterogeneous, though with 
a shared tradition and body of knowledge, and there would have 
been numerous Śulbasūtras, used by various local communities. 
Not surprisingly, very few have survived. Of the handful of extant 
Śulbasūtras, four are found to be significant from a mathematical point 
of view: The Baudhāyana Śulbasūtra, Āpastamba Śulbasūtra, Mānava 
Śulbasūtra and Kātyāyana Śulbasūtra.
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While there is considerable uncertainty about the time when 
the Śulbasūtras were composed, it has now become customary 
among the commentators to assign to their composition the period 
800–200 bce, with the Baudhāyana Śulbasūtra, believed to be the 
earliest, to be from around 800–500 bce. It is also concluded from 
various considerations that the Mānava Śulbasūtra is from a later 
period than the Baudhāyana Śulbasūtra, but is a little older than the 
Āpastamba Śulbasūtra and considerably so compared to the Kātyāyana 
Śulbasūtra; the ranges assigned typically are 650–300 bce for the 
Mānava and Āpastamba Śulbasūtra and 400–200 for the Kātyāyana 
Súlbasūtra. Despite being the oldest the Baudhāyana Śulbasūtra is found 
to be better organized and more elegant in its presentation among all 
the four, while the Mānava Śulbasūtra is least appealing from these 
considerations.

It has also been the one to have received least attention in terms 
of editions, commentaries, etc. whether in traditional or in modern 
context, perhaps due to its lack of appeal. The first modern edition 
with English translation, due to Jeanette van Gelder (1963), is only 
a little over fifty years old, while for the others similar activity was 
undertaken well over 100 years ago, in the nineteenth and early 
twentieth centuries.

Notwithstanding its lack of appeal, there are some very 
interesting original observations in the Mānava Śulbasūtra in terms 
of the mathematical content, which in the overall context seem to 
have not received adequate attention. I may also put in a comment 
here that there seems to be a tendency among the scholars in the 
area to view the Śulbasūtras body of knowledge mostly as a totality 
and the special features of the individual Śulbasūtras are scarcely 
highlighted, except at a superficial level, while, on the other hand, 
there is no doubt that comparative studies between the individual 
Śulbasūtras could throw a good deal of light on various aspects 
of the Vedic civilization, especially as the Śulbasūtras are from 
different periods, and very likely also from different geographical 
regions of India. It is the aim of this article to highlight some of 
the unique features of Mānava Śulbasūtra compared to the other 
Śulbasūtras.
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Circumferance of the Circle
During the ancient period, around the world the ratio of the 
circumference to the diameter of the circle was thought to be 3,1 

and the belief is also reflected in one of the sūtras in the Baudhāyana 
Śulbasūtra; at one point there is an incidental reference to this, where 
a circular pit “with diameter 1 pada and circumference 3 padas” is 
mentioned, indicating that the circumference was taken to be three 
times the diameter. The issue does not feature elsewhere in the 
Baudhāyana Súlbasūtra and in the Āpastamba and Kātyāyana Súlbasūtra. 
In the Mānava Śulbasūtra, however, one sees a recognition that the 
assumption is not correct. A verse in the Mānava (10.2.3.13 as per 
Kulkarni (1978) and 11.13 as per Sen and Bag (1983) numberings) states:

viṣkambhaḥ pañcabhāgaśca viṣkambhastriguṇaśca yaḥ A 
sa maṇḍalaparikṣepo na vālamatiricyate AA

A fifth of the diameter and thrice the diameter is the circumference 
of a circle, not a hair-breadth remains.

Viṣkambha, which also means supporting beam or bolt or bar of a door 
(see Monier-Williams and Apte), was the technical term used for the 
diameter of a circle. Maṇḍala stands for the circle and parikṣepaḥ is 
the term for the circumference. Even though the value described is 
considerably off the mark, the fact of recognition of the ratio being 

	 1	 One may wonder why the value for the ratio was taken to be 3 across 
various cultures. My hypothesis on the issue is that the idea of the 
ratio being 3 dates back to the time when humans were yet to think in 
terms of fractions (except perhaps for “half”, which may have meant 
a substantial portion that is not nearly the whole – as commonly used 
even now in informal conversations – rather than its precise value); 
it may be noted that while encounter with the circle, in the context of 
wheels, is at least over 5,000 years old, fractions seem to have appeared 
on the scene in a serious way, in Indian as well as Egyptian cultures, 
only around the first millennium bce. The ratio is thus 3 in the sense 
that it is not 2 or 4, or even “three and half”. The ingrained notion could 
have developed into a belief (often tagged also to religious authority). It 
was then not reconsidered for a long time, even after fractions became 
part of human thought process. The episodes such as discussed here 
mark a departure from the past.
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strictly greater than 3 is worth taking note of, and so is the apparent 
exultation over the finding.2

It may be recalled here that in the Jaina tradition a similar 
recognition is seen in sūryaprajñapti (believed to be from fifth 
century bce), where the classical value 3 for the ratio is recalled and 
discarded in favour of another value √10. The values could thus be 
contemporaneous, but evidently unrelated from a historical point of 
view, especially on account of the substantial difference in the values 
proposed, in numerical as well as structural terms.

A brief description of the location of the verse in the body of the 
Mānava Śulbasūtra would be in order here, to place the verse in context. 
Section 10.3 in which the verse occurs, at 10.3.2.13,3 is the last of the 
three sections in the Mānava Śulbasūtra, referred by the śulbakāra as 

	 2	 In van Gelder (1963) and in Kulkarni (1978) following it, the verse is 
wrongly interpreted as concerning determination of a square with the 
same area as the given circle: the translation of the verse is given as 
“Dividing the diameter of the circle into five parts and then individual 
parts into three parts each (thus dividing the diameter into 15 parts 
and taking away two parts) yields the side of a square with the same 
area as the circle. This is accurate to a hair-breadth.” If the translation 
in the first part were to be correct then it would correspond to the 
formula for the side of the square with area equal to that of a given 
circle is 13 seen in the Baudhāyana (at 1.60) and also in the Āpastamba 
and Kātyāyana Śulbasūtra. The translation, however, is quite erroneous 
in many respects: occurrence of the word viṣkambha twice readily shows 
that it is not the individual parts that are being subdivided, and there 
is no reference at all to taking away two parts from the 15 subdivided 
parts. Besides, parikṣepa unambiguously corresponds to circumference, 
with the verb parikṣip meaning “to surround”, “to encircle”, etc. (see 
Monier-Williams, Apte), and not the area. It appears that having 
difficulties in interpreting the verse the translator chose to relate it to 
the 13/15 formula seen in the other Śulbasūtras. The translation in Sen 
and Bag (1983) on the other hand is along the lines described here.

	 3	 Actually the 10 is superfluous in these numbers, since the whole of 
Mānava Śulbasūtra is covered in sections of chapter 10; the numbering 
has to do with the translation of the Mānava Śulbasūtra in van Gelder 
(1963), in which the Śulbasūtra appears as chapter 10.
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Vaiṣṇava; the significance of the name, and association with Viṣṇu, if 
any, is not clear from the contents of the section. The general narrative 
in the part containing the verse concerns description of construction 
of vedīs. Interestingly, after talking about the volume of the vedī called 
śamitra vedī the sūtrakāra states:

āyāmamāyāmaguṇam vistāraṁ vistareṇa tu A
samasyā vargamūlam yat tatkarṇaṁ tadvido viduḥ̣ A

Multiply the length by the length and the width by the width. 
It is known that adding them and taking the square root gives 
the hypotenuse.

The reader would recognize this statement as an equivalent form 
of what is called the Pythagoras Theorem, with the figure in 
question (not specified in the verse) being the rectangle.4 It may 
also be noted that the statement is in quite a different form than 
in the other Śulbasūtras; in a way, while the other Śulbasūtras 
seem to be referring to geometric principle involved, considering 
in particular the areas of the squares over the respective sides, the 
exposition here is seen to be focused on computing the size of the 
hypotenuse from the sizes of the sides, without specific reference 
to the underlying geometry.

A few verses down from there, which concern practical details 
about the vedīs and the performance of yajña, we are led to another 
important mathematical statement, involving now the construction 
of a circle with the same area as a square.5 In the Vedic literature 

	 4	 Kulkarni (1978) also mentions the right-angled triangle in this respect 
but there is no evidence, on the whole, of the Śulbasūtras discussing 
right-angled triangles.

	 5	 It is argued in Hayashi (1990) that 10.3.2.10 gives rules both for squaring 
the circle, and circling the square, with the latter being the same as 
Baudhayāna’s rule discussed earlier. The rule for the other direction, 
according to the interpretation in Hayashi (1990) is that given a circle, 
the perpendicular bisector of the equilateral triangle with the diameter 
of the circle as the side, is the side of a square with the same area as 
the circle. The argument involves an emendation of the extant text, 
which the author justifies also on considerations of grammar, but with 
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this issue concerns constructing the āhavanīya, which is a square and 
gārhapatya which is circular with the same area;6 along with there is 
also the semicircular figure with the same area to be constructed for 
the dakṣiṇāgni. The method described here for finding a circle with 
the same area as a given square is the same as given in the Baudhāyana 
Súlbasūtra in geometrical content, but formulated with a difference: in 
an isosceles triangle produced by the diagonals of the square, extend 
the perpendicular (as much as the semi-diagonal side of the triangle) 
and of the extra part of the semi-diagonal (beyond the side) adjoin a 
third part of it to the part within the square, to get the radius of the 
circle. As is well known (see in particular Dani (2010) for a discussion 
on this) this is not very accurate, but is interesting as an approximate 
construction. This is followed by two verses which concern doubling of 
area when measure of a side is replaced by that of the diagonal of the 
square. This is evidently related in this context with the construction 
of the dakṣiṇāgni, though it has not been explicitly mentioned, and 
has also not been brought out in the translations in Kulkarni (1978) 
and Sen and Bag (1983).

And then comes the cited verse for the circumference of the 
circle! What is the relevance that we can identify? We see that some 
circles have appeared on the scene, though what is involved about 
them are the areas. Nothing in the context warrants, apparently, 
consideration of the circumference. However, having got to the circles, 
seems to have inspired the author to mention, and that too with some 
gusto, something interesting that he had realized, namely, that the 
circumference is not just three times the diameter as people thought, 
but more than that, and one would have a safe estimate by adding 

it many aspects which are unclear from the earlier translations from 
van Gelder (1963) and Sen and Bag (1983) become clearer. As noted 
in Hayashi (1990) the above-mentioned rule for squaring the circle is 
unique to the Mānava Śulbasūtra. The rule however is not very accurate.

	 6	 In Dani (2010) concerning the motivation for considering the problem 
of circling the square, I had made a reference to the rathacakraciti, 
which however seems to be an inadequate explanation – the primary 
motivation for the problem is very likely to have been the equality of 
the areas of āhavanīya and gārhapatya.
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one-fifth of the diameter. Thus the statement (like much else actually, 
but it bears emphasis here) appears to be side input, from which it 
would be difficult to draw further inference about the thought process 
that may be involved.

Indeed, one may wonder why the śulbakāra chose the value 
3⅕ for the correction, rather than something that would have been 
better, specifically like 1/6, if not 1/7. From the context, and the 
value itself, it is clearly an ad hoc value being adopted, essentially 
in the context of becoming aware of the classical value of 3 for the 
ratio is not satisfactory, and that something remains. I may reiterate 
here in this respect that the verse notes that “not a hair-breadth 
remains”, which is what atiricyate corresponds to, with the verb 
atiric meaning “to be left with a surplus” (see Monier-Williams), and 
is strictly not a reference accuracy in terms of both lower and upper 
estimates (as treated, for instance, in Kulkarni (1978)). But having 
recognized that the value should be more than 3, why and how did 3⅕ 
come to be chosen for it. The value 3¹⁄₇ , which would be appropriate 
in hindsight, would perhaps would have been rather odd (lacking 
in aesthetic appeal, which is often a consideration while making 
ad hoc choices) to think about at that time. However, why not, 
say 3 ⅙, which would have been much closer to the correct value? 
Thinking of a sixth would seem simpler and natural compared a 
fifth part, it being half of a third, and division into three parts is 
easier operationally, than into five parts, and then halving would 
of course be the trivial next step.

The sūtrakāra, however, prefers to consider division into five 
parts. A clue for this seems to lie in the decimal place value system 
of representation of numbers (writing numbers to base 10, as we 
do now). For a number written in this system, it is much easier to 
compute its fifth part than the third, or any other, part. Indeed, the 
Mānava Śulbasūtra shows preference to using decimally convenient 
divisions in other contexts as well. The verse following the cited one, 
for the circumference describes the size of a square inscribed in a 
circle, viz. with vertices on the circumference. It may be noted that 
the desired size would be 1/ √2 times the diameter of the circle. 
The prescription given is to divide the diameter into 10 parts and 



380  | History and Development of Mathematics in India

take away 3 parts; thus 7/10 is used as a (n approximate) value for 1/ 
√2. Actually, for √2, there was a standard approximate value 17/12 
adopted in the Śulbasūtras, according to which the desired ratio 
would be 12 out of 17 parts, which would be more accurate, but 
Mānava adopts the proportion 7 out of 10, suggesting preference 
for decimal division. In the verse for a new construction for circling 
the square, which we shall discuss in the next section, there is a 
division into 5 parts involved. It may also be recalled here that the 
major large unit involved in the Śulbasūtras is puruṣa and there is a 
subunit aratni, which is a 5th part of puruṣa. This may also be looked 
upon as a factor, related to the use of the decimal system, which 
would have encouraged considering division into 5 parts. I may also 
recall here that in the construction of various vedis that are described, 
division by 5 is involved in many computations.

We conclude this discussion with another small related 
observation. Granting that the value of the circumference to diameter 
ratio was recognized by the śulbakāra as being greater than 3, and 
that he looked for additional decimal parts after which “nothing will 
remain”, ⅕ is the right choice; 1/10 would have been closer, but it is 
less than the correct value.

Circling the Square
As noted in the last section the problem of circling the square, namely, 
of describing a circle with the same area as a given square, had attained 
considerable importance in the Śulbasūtras period. It may be 
emphasized that the framework envisaged for the problem is quite 
different from the analogous problems in Greek mathematics, where 
the constructions were sought to be performed with only the ruler 
and compass, and any comparison of the achievements of the ancient 
Indians, in the context of the Greeks “not having been successful” 
with the problem are facile and irrelevant. The constructions given 
are important in terms of historical development of mathematical 
ideas and need to be viewed only as such.

We have gone over the geometric construction given in the 
Baudhāyana Śulbasūtra for drawing a circle with the same as a given 
square. As noted there, the result it produces is not very accurate, 
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and in fact involves an error of the order of 1.7 per cent (see Dani 
(2010) for more details in this respect). In course of time, the 
suspicions would have gained weight, serving as motivation to 
look for an alternative construction, and one seems to find such 
an attempted construction in the Mānava Śulbasūtra, which we 
shall now discuss.

The construction in question is described in a verse which follows 
right after the contents discussed in the last section here (in 10.3.2.15 
as per the numbering of Kulkarni (1978) and 11.15 of Sen and Bag 
(1983). The verse is:

caturasraṁ navadhā kuryāt dhanuḥ koṭistridhātridhā A 
utsedhātpañcamaṁ lumpetpurı̄ṣeneḥ tāvatsamaṁ AA

The first part of the verse may be translated, quite unambiguously, as: 

Divide the square into nine parts, (by) dividing the horizontal 
and vertical sides into three parts each.

Unfortunately, arriving at the right translation of the rather terse 
second part of the verse, and its interpretation, call for additional 
inputs of contextual nature, and want of these seems to have 
confused earlier translators: in Sen and Bag (1983) the authors 
translate the second part as:

drop out the fifth portion (in the centre) and fill it up with 
loose earth.

And in the commentary section, they comment:

Possibly these are not problems of quadrature of the circle. Ordinary 
squares are drawn without any mathematical significance.

The comment seems quite unwarranted, though it may be 
emphasized there that nothing in the verse specifically indicates 
that it does concern a quadrature formula, or procedure towards 
one. In Kulkarni (1978), following van Gelder (1963), the second 
part is interpreted (in Marathi and Hindi equivalents) as:

from the part jutting out take away one-fifth part and draw a circle 
with the remaining part as the radius.
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Here the word utsedha is interpreted to mean the part of the 
trisectors (arrived at in the first part) that is jutting out on either 
side of the square, until meeting the circle passing through the 
vertices of the square. One-fifth of that is subtracted from the 
segment of the trisector up to its midpoint and the remaining 
part is taken as the radius of the prescribed circle. Implementing 
the procedure accordingly, they calculate the radius; it, however, 
turns out to be much too large for the corresponding circle to have 
the same area as the square, thus putting the interpretation into 
question, but the matter is left at that, with no comment.

Another interpretation of the verse was given by R.C. Gupta 
(1988) (see also Gupta (2004)). Here utsedha is interpreted to mean 
“height” and is associated with the “height”, viz. the radius, of the 
semi-circle from the circle through the vertices of the square. Thus, 
the author infers that the radius of the prescribed circle is meant 
to be 4/5th of the circumscribing circle. With this interpretation the 
area of the circle produced, starting with the unit square, works 
out to be 8π/25, and thus the procedure corresponds to a value 
of π as 25/8. This is a good value by the Śulbasūtras standards. 
However, the interpretation is unsatisfactory in various ways. First 
and foremost, the interpretation does not involve the first part 
of the verse at all. It is inconceivable that the śulbakāra first asks 
you to elaborately divide the square into nine parts, and in the 
following line gives a procedure for the quadrature problem which 
has nothing to do with the subdivision. Second, in the second part 
if it was just the radius of the circumscribing circle to be used as 
a reference, why would it be referred to with the unusual word 
utsedha, which does not occur anywhere else in the Mānava (or 
in other Śulbasūtras), rather than in terms of the diameter of the 
circle, which is something that occurs so frequently in Śulbasūtra 
geometry.

For a faithful interpretation of the verse it seems imperative 
that it must involve the trisectors of square introduced in the first 
part; also utsedha must have something to do with the trisectors 
and the choice of the unusual term must have to do with that the 
trisectors also do not occur anywhere else. Thus, it would seem that 
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the interpretation in van Gelder (1963) and Kulkarni (1978) is on the 
right track inasmuch as it focuses on considering individually the 
lines trisecting the given square along each of the sides, extended 
up to the circle passing through the vertices of the circle. The circle 
is indeed being described in terms of certain points on these lines. 
The main difficulty however seems to be in understanding which 
points are meant. Evidently, the interpretation with regard to the 
points, and how they are to be used (see more on this below), 
adopted in van Gelder (1963) and Kulkarni (1978) does not seem 
to the right one, as it is way off the mark.

The overall formulations and symmetry considerations suggest 
that we are to pick two points on each of the four lines that trisect the 
square along a side, located symmetrically (and hence at the same 
distance from the centre of the square) and the circle through these 
points is the desired circle; this in a way explains the explication 
through “covering with loose earth”, as the totality of the eight points 
is indicative of a circle which is what is to be covered. Now, which 
are the two points on each of the lines? One would be in a better 
position to figure out what the śulbakāra’s line of thought, if one keeps 
in mind the Baudhāyana construction of the circle, described earlier. 
Recall that there the bisector of the square is extended until meeting 
the circle through the vertices, and 1/3rd of the part is added to the 
segment within, to get the radius of the circle that is sought after; one 
can alternatively think of this as identifying the point through which 
the circle should pass (the centre of the circle is of course understood 
to be the centre of the square). The new idea now is that instead of 
the bisectors of the squares we are considering the trisectors. On the 
bisectors the points in question were chosen to be at 1/3rd of the jutting 
out part, from the side of the square. One now needs to look for a similar 
number, and the analogous point on the trisectors, to complete the 
analogous construction. The number is picked to be 1/5th; the choice 
could have been based on intuition, and the point is now meant to 
be on the trisector at 1/5th of the jutting out part, from the side of the 
square. At this point the analogy with the Baudhāyana construction 
throws open, to our minds, two possibilities, one is to take the 
segment of the trisector up to the point thus constructed either from 
the midpoint of the trisector, or the centre of the square; in the case of 
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the Baudhāyana construction with the bisector the two coincide, but 
here they are different. For some reason in Kulkarni (1978) the former 
interpretation is favoured (with respect to the point picked there, 
on which was commented upon above). However, viewed in the 
full context, it is the other interpretation that may be seen to be 
more appropriate. The śulbakāras do not in general try describe a 
number for the radius, but a region to be covered determined by 
some point (or a collection of points), and second, in the overall 
context of the description of the construction the midpoint of the 
trisector has no relevance (and has not been referred to). Once 
these points are noted, the inference would be that the prescribed 
circle passing through the point(s) as above on the trisectors, at 
one-fifth of the jutting out part from the side of the square. One 
may now rewrite the interpretation of the second part, referring 
to the collection of the 8 points, as:

on the parts jutting out mark the points at one-fifth (from the 
square) and draw the circle through them.

A simple calculation shows that for a square with unit side length 
the radius of the circle is 

1
2

1 1
5

17
3

1 1
8

2

� �
�

�
�

�

�
�

�
�
�

��

�
�
�

��
� ,

 

and this yields the area of the circle to be 0.994 ..., a much more 
accurate value compared to the earlier one, with an error of only 
about 0.5 per cent, in place of 1.7 per cent (see Dani 2010) for 
details of the calculations and other related comments). Thus, from 
a mathematical point of view, this turns out to be a good choice. 
We see also that it emerges naturally as a generalization of the 
Baudhāyana construction in terms of development of ideas. As a 
result, it seems reasonable to expect that this is what the śulbakāra 
had in mind. The interpretation incorporates all the components 
of the verse, and all the ingredients needed in the formulation 
may be seen to be present in the verse, in their natural order. The 
author is hopeful that the interpretation would be confirmed to 
be valid by expert Sanskritists, from a linguistic point of view, 
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possibly after some emendation that could be justified based on 
considerations of corruption on account of one or other factors.
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Geometry in Śulbasūtras

Sudhakar C. Agarkar

Abstract: India has a long tradition of mathematics. A variety of 
mathematical principles were used in rituals followed in ancient 
Indian society. Although most of these principles were passed 
on from one generation to another orally, some of them have 
been recorded in sūtra forms. Śulbasūtras composed sometimes 
in 800 bce is one such document. It depicts some of the major 
theorems of modern geometry. Pythogoras theorem can be 
cited as an example. The Bodhāyana Śulbasūtra clearly states 
the theorem in the context of a diagonal of a rectangle. It goes 
on describing how to draw figures like square, rectangle and 
circle. Śulbasūtra also describes the methods of transformation 
of figures. Procedures for transforming circle into a square, 
a square into a circle, circle into a rectangle and a rectangle 
into a circle are given clearly. Study of these procedures and 
principles brings out clearly how deep geometrical concepts 
were embedded into the thinking of our ancestors. This paper 
attempts to highlight geometrical knowledge of ancient Indian 
mathematicians as presented in Śulbasūtras.  

Keywords: Ancient geometrical knowledge, mathematics in 
rituals, Śulbasūtras, transformation of figures.
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Introduction
Our search for ancient mathematical literature takes us to 
Śulbasūtras that deal with the rules for the measurement and 
construction of various sacrificial fire places (agni) and altars 
(vedīs). Śulbasūtras do not describe geometry in the forms of 
formulae or statements of theorems. Instead, they give guidelines 
for the accurate layout of altars and fire places. In spite of the above 
limitations the Śulbasūtras have a special place in the history of 
Indian mathematics. 

The name Śulbasūtras is derived from two Sanskrit words 
śulba and sūtra. Śulba in Sanskrit literally means a cord, a rope or 
a string. It is derived from the basic word sulb or sulv meaning 
to mete out or to measure. The word sūtra means aphorism or a 
short rule. In ancient India, there was a practice of using ślokas 
for writing. These ślokas give a lot of meaning in shortest possible 
words. Since most of the knowledge in ancient India was passed 
on from one generation to another through oral mode, this sūtra 
mode of writing helped them to remember and reproduce the 
matter correctly. 

There are many versions of Śulbasūtras available. Out of 
these the Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and 
Mānava are well known. 

	 •	 Baudhāyana Śulbasūtra: 323 sūtras in 21 chapters
	 •	 Āpastamba Śulbasūtra: 202 verses in 21 chapters
	 •	 Kātyāyana Śulbasūtra: 61 verses in 6 chapters
	 •	 Mānava Śulbasūtra: 233 verses in 16 chapters

Exact time of the composition of these treatises is not known. 
But historians give the following chronology: 

	 •	 Baudhāyana Śulbasūtra: 800–500 bce

	 •	 Mānava Śulbasutra: 750–690 bce	
	 •	 Āpasatamba Śulbasūtra: 650–450 bce

	 •	 Kātyāyana Śulbasūtra: 400–300 bce
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Śulbasūtras provide useful information about geometrical 
figures and their transformations. As T.A. Saraswathi Amma (2017) 
mentions in her book, Geometry in Ancient and Medieval India, the 
geometrical contents of the Śulbasūtras can be broadly divided into 
three categories: 1. Theorems expressly stated, 2. Constructions, 
and 3. Geometrical truths implied in constructions.

Theorem of Square of Diagonal
The theorem popularly known as Pythagoras Theorem is 
mentioned in and the Baudhāyana Śulbasūtra in the following śloka:

nh?kZprqjÏL;k{.k;kjTtq% ik'oZekuhfr;±xekuhA
p;ri`FkXHkqrsdq:rLrnqHk;adjksfrAA

The diagonal cord of a triangle makes both (squares) that the 
vertical side and the horizontal side make separately. Pictorially 
the theorem is shown in fig. 26.1.

The theorem is also extended to square. In this case since the 
vertical and horizontal sides are same it is stated “The diagonal 
cord of a square makes double the area” in the following śloka:

prqjÏL;k{.k;kjTtqf}ZLrkorhHkwfedjksfrA

fig. 26.1 The Kātyāyana form of Pythagoras’s Theorem
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Perpendicular Bisector of a Line
Śulbakāras had the duty to find out the directions. Using the 
shadow of the sun they could determine the east–west direction. 
In order to find the north–south direction they used to draw a 
perpendicular bisector to the east–west line. This procedure is 
described in the following śloka:

rnarjajTokH;L;]ik'kksÑRok] 'kÄ~Doksik'kksçfreqP;A
nf{k.kk;E;eè;s'kadqfugafr,oeqÙkjr% lksnhphAA

Doubling the distance between the end points on a cord and 
making ties one fixes the ties on the pins, stretches the cord to 
the south and strikes a pin at the middle point. Similarly to the 
north. That is the north–south line, a perpendicular bisector of 
an east–west line. 

Actual procedure of obtaining the perpendicular bisector is shown 
in fig. 26.1. This method looks similar to the modern method of 
obtaining the perpendicular bisector where arcs are drawn instead 
of stretching the ropes.

Construction of a Square
Square is a common figure in geometry. Śulbakāras suggested a 
practical method of obtaining the squares. The most primitive 
method of getting a square is based on drawing a perpendicular 
bisector to a given line from its midpoint. It suggests to take a 
bamboo equal to the length of the side of a square. It should have 
holes at the ends and at the middle. Place the bamboos at the right 
angles to the first one. Slip the middle hole of the bamboo so that 

fig. 26.2: Procedure of obtaining the perpendicular bisector

fig. 26.3: How to make a square: a practical method



|  391Geometry in Śulbasūtras

its ends touch the arcs. The ends of the bamboo mark the corners 
of the square. Since the bamboo is tangential to the arc it makes 
a right angle with the other bamboo touching it (fig. 26.3). Let AB 
be the line with O as its centre. A bamboo equal to the length of 
AB is first pivoted at A and the free end is rotated as shown. Then 
the bamboo is pivoted at B and the other end is rotated. These two 
arcs meet at P. Join OP and extend. Finally place the bamboos or 
draw lines tangential to these curves. We thus get square ABCD.

Square Equal to Sum of Two Squares
The Āpastamba Śulbasūtra suggests a very simple method of getting a 
square equal to two squares in the śloka as given below (see fig. 26.4):

âlh;l% dj.;k o"khZ;lks o`èneqfYy•srA
o`èæL;k{.k;kjTtq#Hks leL;frAA

With the side of a smaller one a segment of the bigger one should 
be cut off. The diagonal cord of the segment will combine the 
two squares. 

fig. 26.4: Method to find a square equal to the sum of two given 
squares is given in all Śulbasūtras

Perpendicular Bisector of a Line
Śulbakāras had the duty to find out the directions. Using the 
shadow of the sun they could determine the east–west direction. 
In order to find the north–south direction they used to draw a 
perpendicular bisector to the east–west line. This procedure is 
described in the following śloka:

rnarjajTokH;L;]ik'kksÑRok] 'kÄ~Doksik'kksçfreqP;A
nf{k.kk;E;eè;s'kadqfugafr,oeqÙkjr% lksnhphAA

Doubling the distance between the end points on a cord and 
making ties one fixes the ties on the pins, stretches the cord to 
the south and strikes a pin at the middle point. Similarly to the 
north. That is the north–south line, a perpendicular bisector of 
an east–west line. 

Actual procedure of obtaining the perpendicular bisector is shown 
in fig. 26.1. This method looks similar to the modern method of 
obtaining the perpendicular bisector where arcs are drawn instead 
of stretching the ropes.

Construction of a Square
Square is a common figure in geometry. Śulbakāras suggested a 
practical method of obtaining the squares. The most primitive 
method of getting a square is based on drawing a perpendicular 
bisector to a given line from its midpoint. It suggests to take a 
bamboo equal to the length of the side of a square. It should have 
holes at the ends and at the middle. Place the bamboos at the right 
angles to the first one. Slip the middle hole of the bamboo so that 

fig. 26.2: Procedure of obtaining the perpendicular bisector

fig. 26.3: How to make a square: a practical method
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Let ABCD and PQRS be two squares. Mark the point X taking the 
distance equal to the side of a smaller square. Join X with the vertex 
S. The length of this line should be the length of the new square. 
Thus, square XYZS is equal to two squares ABCD and PQRS. 

Square Equal to Difference of Two Squares
Even the method of finding out a square equal to the difference of 
two squares in the Āpastamba Śulbasūtra is quite simple. It states: 

prqjJkPprqjJ fuftZgh"kZu ;kofUuftZgh"kZsr rL; dj.;k o`èneqfYy•srA
òènL; ik'oZekuh v{.k;k brjr ik'oZ milagjsr lk ;=k fuirsÙknifNaè;krAA

Wishing to deduct a square from a square, one should cut off 
a segment by the side of the square to be removed. One of the 
lateral sides is drawn diagonally across to touch the other lateral 
side. The portion of the side beyond this point be cut off.

The procedure is illustrated in fig. 26.5. Let ABCD be the larger 
square and AE be the side of the smaller square. Mark a point E 
equal to the length of small square side. Draw AD diagonally until 
it touches EF at P. EP will be the side of square after subtraction.

Converting Rectangle into a Square
As stated above the Śulbasūtras give procedures for transformation 
of figures. It would be appropriate to see some of them. As a first 
case let us take the conversion of a rectangle into a square. The 
Āpastamba Śulbasūtra gives the following procedure for this 
conversion:

fig. 26.6: Finding a square equal to a given rectangle

fig. 26.5: Method to find out a square equal to 
the difference of two squares
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nh?kZprqjJa leprqjJa fpfd"kZ.k fr;Zd ekU;kifPN|A
'ks"ka foHkT;kse;r minè;kr] •.M ekxarquk laiwj;srAA

Wishing to turn a rectangle into a square, one should cut off 
a part equal to the transverse side and the remainder should 
be divided into two and juxtaposed at two sides. The bit at the 
corner should be filled in by an imported bit. 

The procedure to be followed is described below along with 
(see fig. 26.6). The rectangle ABCD is given. Let L be marked on 
AD so that AL = AB. Then complete the square ABML. Now bisect 
LD at X and divide the rectangle LMCD into two equal rectangles 
with the line XY. Now move the rectangle XYCD to the position 
MBQN. Complete the square AQPX. Now rotate PQ about Q so that 
it touches BY at R. Then QP = QR and we see that this is an ideal 
“rope” construction. Now draw RE parallel to YP and complete 
the square QEFG. This is the required square equal to the given 
rectangle ABCD.

Converting a Square into a Rectangle
The procedure to convert a square into a rectangle as given in the 
Āpastamba Śulbasūtra:

;kofnPNa ik'oZekU;kS o/Zf;Rok mÙkjiwokZ d.kZjTtqek;PNsrA
lk nh?kZprqjJeè;LFkk;ka leprqjJfr;±ekU;ka ;=k fuirfr 
rr mÙkj nf{k.kk'ka fr;±Xekuh dq;kZr] rn nh?kZprqjJa HkofrAA

Let ABCD and PQRS be two squares. Mark the point X taking the 
distance equal to the side of a smaller square. Join X with the vertex 
S. The length of this line should be the length of the new square. 
Thus, square XYZS is equal to two squares ABCD and PQRS. 

Square Equal to Difference of Two Squares
Even the method of finding out a square equal to the difference of 
two squares in the Āpastamba Śulbasūtra is quite simple. It states: 

prqjJkPprqjJ fuftZgh"kZu ;kofUuftZgh"kZsr rL; dj.;k o`èneqfYy•srA
òènL; ik'oZekuh v{.k;k brjr ik'oZ milagjsr lk ;=k fuirsÙknifNaè;krAA

Wishing to deduct a square from a square, one should cut off 
a segment by the side of the square to be removed. One of the 
lateral sides is drawn diagonally across to touch the other lateral 
side. The portion of the side beyond this point be cut off.

The procedure is illustrated in fig. 26.5. Let ABCD be the larger 
square and AE be the side of the smaller square. Mark a point E 
equal to the length of small square side. Draw AD diagonally until 
it touches EF at P. EP will be the side of square after subtraction.

Converting Rectangle into a Square
As stated above the Śulbasūtras give procedures for transformation 
of figures. It would be appropriate to see some of them. As a first 
case let us take the conversion of a rectangle into a square. The 
Āpastamba Śulbasūtra gives the following procedure for this 
conversion:

fig. 26.6: Finding a square equal to a given rectangle

fig. 26.5: Method to find out a square equal to 
the difference of two squares
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Producing the sides of square eastward to the desired length of 
a lateral side one should draw the north eastern diagonal. The 
part of the transverse side to the north of the point where the 
diagonal cuts it is to be discarded and its southern part is to be 
made the transverse side of the rectangle. 

The procedure is illustrated in fig. 26.7. Let ABCD be given the 
square we wish to convert into a rectangle. Produce AD and BC 
to F and E so that AF = BE = the required side of the rectangle. 
Complete the rectangle ABEF and join the diagonal BF cutting CD 
in G. Through G draw a straight line IH parallel to the side of the 
square. IBEH is the required rectangle equal to the square ABCD.

Converting a Square into a Circle
Śulbasūtras also give guidelines to convert a square into a circle. 
An attempt is made to describe this procedure with illustration 
(fig. 26.8). Let ABCD be the given square. First find the centre of 
this square, let it be O. Connect O with the midpoint of DC (P) and 
extend the line. Now rotate OD to get the point E. Obtain Q on 
PE such that PQ is one third of PE. The required circle has centre 
O and radius OQ.

Converting a Circle into a Square
All the Śulbasūtras contain a method to square the circle. It is an 
approximate method based on constructing a square of side 13/15 
times the diameter of the given circle. In fig. 26.9 XY is taken as 

fig. 26.8: The Śulbasūtras method of “circling the square”

fig. 26.7: Procedure to convert a square into a rectangle
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13/15 part of the diameter AB. The circle passing through X and Y 
is the required circle equal to the given square. In this case π = 4 
× (13/15)2 = 676/225 = 3.00444. So it is not a very good approximation. 
None the less, a circle closely equal to the area of the square can 
be obtained whenever required. 

Geometrical Truths Implied
Even though, not explicitly stated, there are many geometrical 
truths that are implied in the construction procedure suggested 
in Śulbasūtras. Some of them are mentioned here:
	 1.	 The circle is a locus of points at constant distance from a 

given point.

fig. 26.9: The Śulbasūtras 13/15 method of “circling the square”

Producing the sides of square eastward to the desired length of 
a lateral side one should draw the north eastern diagonal. The 
part of the transverse side to the north of the point where the 
diagonal cuts it is to be discarded and its southern part is to be 
made the transverse side of the rectangle. 

The procedure is illustrated in fig. 26.7. Let ABCD be given the 
square we wish to convert into a rectangle. Produce AD and BC 
to F and E so that AF = BE = the required side of the rectangle. 
Complete the rectangle ABEF and join the diagonal BF cutting CD 
in G. Through G draw a straight line IH parallel to the side of the 
square. IBEH is the required rectangle equal to the square ABCD.

Converting a Square into a Circle
Śulbasūtras also give guidelines to convert a square into a circle. 
An attempt is made to describe this procedure with illustration 
(fig. 26.8). Let ABCD be the given square. First find the centre of 
this square, let it be O. Connect O with the midpoint of DC (P) and 
extend the line. Now rotate OD to get the point E. Obtain Q on 
PE such that PQ is one third of PE. The required circle has centre 
O and radius OQ.

Converting a Circle into a Square
All the Śulbasūtras contain a method to square the circle. It is an 
approximate method based on constructing a square of side 13/15 
times the diameter of the given circle. In fig. 26.9 XY is taken as 

fig. 26.8: The Śulbasūtras method of “circling the square”



396  | History and Development of Mathematics in India

	 2.	 The perpendicular bisector is the a locus of points at a 
constant distance from a given point.

	 3.	 The tangent to a circle is perpendicular to the radius at the 
point of contact.	

	 4.	 A finite straight line can be divided into any number of equal parts.
	 5.	 The diagonal of a rectangle or a square bisects them.
	 6.	 The figure joined by the midpoints of the adjacent sides of 

a square is itself a square.

Conclusions and Implications
Śulbasūtras are important treatises of ancient Indian mathematics. 
Although written to construct Vedic altars, they possess important 
geometrical information (Thakura Feru 1987). The techniques 
suggested in Śulbasūtras are useful even in modern days. Hence, school 
and college students in India must be made familiar with this literature 
so that they get the glimpse of wisdom possessed by our forefathers. 

Engineering needs a lot of geometry. They should be made to 
follow the procedure described in these treatises. It will facilitate 
the ability to construct different geometrical figures. Carpenters 
and plaster workers are seen using these techniques quite often 
with the help of a rope. The ancient mathematics behind the 
procedure followed must be clarified to them (Kulkarni 1998).   
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Development of Geometry in
Ancient and Medieval Cultures

Shrenik Bandi 

Abstract: The important branch of mathematics which received 
earliest attention was geometry and it is well explained in the 
texts of ancient and medieval cultures. In this paper I make an 
attempt to explore how geometry was developed and also discuss 
various results obtained by Vedic and Jaina scholars.

The beginning of geometry can be traced to ancient Mesopotamia, 
Egypt, Babylonia and India. Geometrical concepts were used in 
the development of towns in Indus Valley Civilization. We find 
many geometrical patterns in nature. Pythagoras was probably 
one of the first to give a deductive proof of Pythagoras Theorem. 
Thales expanded the range of geometry.

Geometry flourished in India, Arabia, China and Europe in ninth 
century. Analytic geometry, projective geometry, non-Euclidean 
geometry and so on were developed in seventeenth century.

Results related to rational right-angle triangle and conversion 
of one figure into other, all are mentioned in the Śulbasūtras. 
Louis Renou lists eight Śulbasūtras of which most notable are the 
Baudhāyana, Āpastamba and Kātyāyana. In the construction of 
mahāvedī and altars properties of right-angle triangle were used. 
M. Cantor and others recognize that Pythagoras Theorem was 
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known to Indians before eighth century bce. The method for 
finding the area of a triangle � � � � � �s s a s b s c s d( )( )( )( )  was 
known. Derivation of relation abc

r4
� �  is given in the Vedic text.

The Jaina texts – the Bhagavatīsūtra, Tattvārthādhigamasūtra 
Bhāṣya, Jambūdvīpasamāsa, Tiloyapaṇṇattī, Bṛ̥hatkṣetrasamāsa, 
Laghukṣetrasamāsa, Jambūdvīpapaṇṇatti Saṅgaho and Trilokasāra 
contain detailed knowledge of geometry. I have illustrated 
and derived some of the results from Jaina texts. The epithet 
is kṣetra-gaṇita, rekhā-gaṇita and kṣetramiti. In the Sūryaprajñapti 
ellipse was known by viṣamacakravāla. Perimeter of the ellipse 
P a b� �4 62 2  and area of the ellipse � �P b2

4
 were given. Now 

geometry is applied to computer science, crystallography and 
number theory.

Keywords: Euclidean, lines, triangle, quadrilateral, circle, 
Pythagorean, Śulbasūtras, Vedas, kṣetra-gaṇita.

Introduction
Geometry (from the Ancient Greek: γεωμετρiία; geo – “earth”, 
metron “measurement”) is a branch of mathematics concerned 
with shape, size, relative position of figures and the properties 
of space. It arose independently in a number of early cultures 
and it was a collection of empirically discovered principles. The 
earliest recorded beginnings of geometry can be traced to ancient 
Mesopotamia and Egypt in the second millennium bce (Friberg 
1981; Neugebauer 1969). By the third-century bce, geometry was 
put into an axiomatic form by Euclid, whose treatment, Euclid’s 
elements set a standard for many centuries to follow (Turner et 
al. 1998: 1).

Greek expanded the range of geometry to many new kinds of 
figures, curves, surfaces and solids; they changed its methodology 
from trial and error to logical deduction. Geometry began to see 
elements of formal mathematical science emerging in the West as 
early as the sixth century bce (Boyer 1991: 43). Euclidean geometry 
includes the study of points, lines, planes, angles, triangles, 
congruence, similarity, solid figures, circles and analytic geometry 
(Schmidt et al. 2002). Topology is the field concerned with the 
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properties of geometric objects that are unchanged by continuous 
mappings. Convex geometry investigates convex shapes in the 
Euclidean space and its more abstract analogues, Algebraic 
geometry studies geometry through the use of multivariate 
polynomials and other algebraic techniques. Discrete geometry 
is concerned mainly with questions of relative position of simple 
geometric objects, such as points, lines and circles.

Geometrical Pattern Found in Nature
Living things like orchids, hummingbirds and the peacock’s tail 
have abstract designs with a pattern and colour that artists struggle 
to match (Forbes 2012). Mathematics seeks to discover and explain 
abstract patterns or regularities of all kinds (Steen 1998).

Symmetry
Symmetry is universal in living things. Animals mainly have 
bilateral or mirror symmetry, as do the leaves of plants and some 
flowers such as orchids (Stewart 2001: 48-49). Plants often have 
radial or rotational symmetry, as do many flowers and some 
groups of animals such as sea anemones. Fivefold symmetry is 
found in the echinoderms, the group that includes starfish, sea 
urchins and sea lilies.

Fivefold symmetry: Starfish  Rotational symmetry: Cycas circinalis
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Example of different shapes of triangle compare with the nature: 

(a) An equilateral triangle (i.e. one of which all three sides are equal) 
is the elemental earth form; (b) a right-angled triangle is the spirit of 
water (to find spirit of water is the most advanced kind of magic); (c) 
a scalene triangle with no equal sides is the spirit of the air; and (d) an 
isosceles triangle (i.e. one of which only two sides are equal) is 
the elemental fire

Geometry in Early Period 
The earliest known unambiguous examples of written records, 
from Egypt and Mesopotamia dating about 3100 bce, demonstrate 
that ancient peoples had already begun to devise mathematical 
rules and techniques useful for surveying land areas, constructing 
buildings and measuring storage containers. The earliest recorded 
beginnings of geometry can be traced to the early people of 
the ancient Indus Valley Civilization and ancient Babylonian 
civilization from around 3000 bce. There were some surprisingly 
sophisticated principles, and it might be hard put to derive some 
of them without the use of calculus; the Egyptians had a correct 
formula for the volume of a frustum of a square pyramid of Indus 
Valley Civilization.

Figures of triangle from the nature.
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Development of Geometry in Different Countries  
since Ancient Time 

BABYLONIAN GEOMETRY 

There have been recent discoveries showing that ancient 
Babylonians might have discovered geometry nearly 1,400 years 
before the Europeans. The Pythagorean Theorem was also known 
to the Babylonians.

EARLY GREEK GEOMETRY 

The early history of Greek geometry is unclear, because no original 
sources of information remain and all of our knowledge is from 
secondary sources written many years after the early period.

Thales (635–543 bce) of Miletus (now in south-western Turkey), 
used geometry to solve problems such as calculating 
the height of pyramids and the distance of ships from 
the shore. He is credited with the first use of deductive 
reasoning applied to geometry, by deriving four 
corollaries to Thales’ Theorem (Boyer 1991: 43). Thales 
strongly believed that reasoning should supersede 
experimentation and intuition, and began to look for 
solid principles upon which he could build theorems. 
This introduced the idea of proof into geometry and 
he proposed some axioms that he believed to be 
mathematical truths.
	 •	 A circle is bisected by any of its diameters.
	 • 	The base angles of an isosceles triangle are equal.
	 • 	When two straight lines cross, the opposing angles are equal.
	 • 	An angle drawn in a semi-circle is a right angle.
	 •	 Two triangles with one equal side and two equal angles are 

congruent.
It is unclear exactly how Thales decided that the above axioms 

were irrefutable proofs, but they were incorporated into Greek 
mathematics and the influence of Thales would influence countless 
generations of mathematicians.
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CLASSICAL GREEK GEOMETRY 

In ancient Greek, geometry was the crown jewel of their sciences, 
reaching a completeness and perfection of methodology that no 
other branch of their knowledge had attained. They recognized 
that geometry studies “eternal forms”, of which physical objects 
are only approximations; and developed the idea of the “axiomatic 
method”, which is still in use.

Pythagoras (582–496 bce), of Ionia and later Italy, then 
colonized by Greeks, may have been a student of Thales. The 
theorem that bears his name may not have been his discovery, 
but he was probably one of the first to give a deductive proof of 
it. Pythagoras established the Pythagoreas School (Eves 1990). 

The Pythagoreans added a few new axioms to the store of 
geometrical knowledge:
	 • 	The sum of the internal angles of a triangle equals two right 

angles (180º).
	 •	 The sum of the external angles of a triangle equals four right 

angles (360º).
	 •	 The sum of the interior angles of any polygon equals (2n – 4) 

right angles, where n is the number of sides.
	 • 	The sum of the exterior angles of a polygon equals four right 

angles, however of many sides.
	 •	 For a right-angled triangle, the square of the hypotenuse is 

equal to the sum of the squares of the other two sides.
Hippocrates took the development of geometry further. He 

was the first to start using geometrical techniques in other areas 
of mathematics. He studied the problem of squaring the circle 
which is not perfect, simply because pi (π) is an irrational number.
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APOLLONIUS OF PERGA (262–190 BCE) 

He was a mathematician and astronomer, and he wrote a treatise 
called Conic Sections. He is credited with inventing the words 
ellipse, parabola and hyperbola, and is often referred to as the 
great Geometer.

GREEK GEOMETRY AND ITS INFLUENCE 

Greek geometry eventually passed into the hands of the Islamic 
scholars, who translated it and added to it. In this study of Greek 
geometry, there were many more Greek mathematicians and 
geometers who contributed to the history of geometry.

EGYPT GEOMETRY (300 bce))
Euclid was associated with the cosmopolitan 
University of Alexandria. He may well have 
been an Egyptian or a Jew (Hogben 1967: 
118), but like others of the school he wrote 
in Greek his thirteen books composed about 
300 bce, Euclid himself wrote eight more 
advanced books on geometry. He was brought to the university at 
Alexandria by Ptolemy I, King of Egypt. Around 300 bce, geometry 
was revolutionized by Euclid, whose Elements, widely considered 
the most successful and influential textbook of all time (Boyer 1991: 
119), introduced the axiomatic method and is the earliest example 
of the format still used in mathematics today, that of definition, 
axiom, theorem and proof. Euclid arranged them into a single, 
coherent logical framework (ibid.: 104). The elements were known 
to all educated people in the West until the middle of the twentieth 
century and its contents are still taught in geometry classes today 
(Eves 1990: 141).

Points :  In many areas of 
geometry,  such as analytic 
geometry, differential geometry, 
and topology, all objects are 
considered to be built up from 
points (Gerla 1995). 

Euclid
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Line: In analytic geometry, a line in the plane is often defined as 
the set of points whose coordinates satisfy a given linear equation 
(Casey 1885). For instance, planes can be studied as a topological 
surface without reference to distances or angles (Munkres 2000).

Following are five axioms of Euclid:
	 1. 	Any two points can be joined by a straight line.
	 2. 	Any finite straight line can be extended in a straight line.
	 3. 	A circle can be drawn with any centre and any radius.
	 4.	 All right angles are equal to each other.
	 5. 	If two straight lines in a plane are crossed by another straight 

line called the transversal, and the interior angles between 
the two lines and the transversal lying on one side of the 
transversal add up to less than two right angles, then on that 
side of the transversal, the two lines extended will intersect 
(also called the parallel postulate).

Euclid’s fifth postulate cannot be proven as a theorem. Euclid 
himself used only the first four postulates, but was forced to 
invoke the parallel postulate. In 1823, Janos Bolyai and Nicolai 
Lobachevski independently realized that entirely self-consistent  
“non-Euclidean geometries” could be created in which the parallel 
postulate did not hold.

Archimedes (287–212 bce) of Syracuse is often considered to be 
the greatest of the Greek mathematicians; he developed methods 
very similar to the coordinate systems of analytic geometry. 
Geometry was connected to the divine for most medieval scholars. 
The compass in this thirteenth-century manuscript is a symbol of 
God’s act of Creation.

ISLAMIC GOLDEN AGE 

The final destruction of the Library of Alexandria at the Muslim 
conquest of Egypt in 642 ce marks the collapse of classical 
antiquity in the West, and the beginning of the European “Dark 
Ages”. By the beginning of the ninth century, the “Islamic Golden 
Age” flourished, the establishment of the “House of Wisdom” in 
Baghdad marking a separate tradition of science in the medieval 
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Islamic world, building not only Hellenistic but also on Indian 
sources. Al-Mahani (820 ce) conceived the idea of reducing 
geometrical problems such as duplicating the cube to problems in 
algebra. Thȧbit ibn Qurra was a Arab mathematician, generalized 
the Pythagorean theorem, which he extended from special right 
triangles to all triangles in general, along with a general proof 
(Sayili 1960: 35-37).

ARABIA 

In the Middle Ages, mathematics in medieval Islam contributed 
to the development of geometry, especially algebraic geometry 
(Rashed 1994: 35). Three scientists, Ibn al-Haytham, Khayyam and 
al-Tusi, had made the most considerable contribution to this branch 
of geometry whose importance came to be completely recognized 
only in the nineteenth century. The theorem on quadrilaterals, 
including the Lambert quadrilateral in which three of its angles 
are right angles, had a considerable influence on the development 
of non-Euclidean geometry.

CHINA 

The Chinese knew the relation 32 + 42 = 52 in the time of Chou 
Kong (Mikami 1913: 7)1 (1105 bce). The first definitive work on 
geometry in China was the Mo Jing, the Mohist canon of the early 
philosopher Mozi (470–390 bce). It was compiled after his death by 
his followers around the year 330 bce (Needham 1959, vol. 3: 91). 
However, due to the infamous Burning of the Books in a political 
manoeuvre by the Qin Dynasty ruler Qin Shihuang (221–210 bce), 
multitudes of written literature created before his time was purged. 
This book included many problems where geometry was applied 
and included the use of the Pythagorean Theorem. The book 
provided illustrated proof for the Pythagorean Theorem (ibid.: 22).

EUROPE

The first European attempt to prove the postulate on parallel lines 
made by Witelo, the Polish scientists of the thirteenth century. The 
proofs put forward in the fourteeth century by the Jewish scholar 

	 1	 The Kahun Papyrus (2000 bce) contains four similar relations.
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Levi ben Gerson (France). Euclid had stimulated both J. Wallis’s 
and G. Saccheri’s studies of the theory of parallel lines. Euclid’s 
fifth postulate, the parallel postulate, is equivalent to Play fair’s 
postulate, which states that, within a two-dimensional plane, for 
any given line ℓ and a point A, which is not on ℓ, there is exactly one 
line through A that does not intersect ℓ. In hyperbolic geometry, by 
contrast, there are infinitely many lines through A not intersecting 
ℓ, while in elliptic geometry, any line through A intersects ℓ.

INDIA

Geometry arose independently in India, with texts providing rules 
for geometric constructions appearing as early as the third century 
bce, both in Vedic and Jaina cultures.

Geometry in Vedic Culture 
Indian mathematicians also made many important contributions 
to geometry. The Śatapatha Brāhmaṇa (third century bce) contains 
rules for ritual geometric constructions that are similar to the 
Śulbasūtras. According to Hayashi, the Śulbasūtras contain the 
earliest extant verbal expression of the Pythagorean Theorem, 
although it had already been known to the old Babylonians. In the 
Bakṣālī manuscript, there are a handful of geometric problems. 
The Āryabhaṭīya (499 ce) includes the computation of areas and 
volumes, he stated his famous theorem on the diagonals of a cyclic 
quadrilateral and complete description of rational triangles (i.e. 
triangles with rational sides and rational areas) (Hayashi 1995: 
121-22).

The Śulbasūtras in the Vedas is a manual of geometrical 
constructions (Murthy 1992: 1). The Taittirīya Saṁhitā of the 
Yajurveda gives the measurement of mahāvedī with a right angle of 
sides 15, 26 and hypotenuse 39. Kātyāyana gives the construction 
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of a right angle triangle with sides n
a

2 1−  a, n a, and a hypotenuse 
of length n

a
2 1+  a. Such construction was used in building the vedīs 

using the properties of similar triangles. It is surprising to find 
that an instrument was actually used for drawing circles in the 
Indus Valley as early as 2500 bce (Mackay 1938). The date of oldest 
Śulbasūtras is said to be eight century bce.

The theorem (Murthy 1993: 155-58) stating that the square on 
the hypotenuse of a right angle triangle is equal to the sum of the 
square on its sides has been explicitly stated in the Śulbasūtras. It is 
attributed to Pythagoras (540 bce). We call it hypotenuse theorem. 
Many different proofs have been given. We consider the proof 
(Amma 1979: 133) given by Bhāsakra. Twice the product of the bhujā 
and koṭi combined with the square of their difference will be equal 
to the square of the side (hypotenuse) (Bhāsakra Bījagaṇita 129):

nks% dksVÔUrjoxsZ.k f}?uks ?kkr% lefUor% A
oxZ;ksxle% l L;kn~ };ksjO;ÙkQ;ks;ZFkkAA

Draw a square ABCD of each side of length 
c units. Draw a perpendicular from point 
A, B, C and D as shown in the diagram 
which meets at G, H, E and F. The length 
AF = BH = CG = DE = a and the length of 
AE = BF = CH = DG = b. therefore, GE = EF 
= FH = HG = a − b.

The four triangles are all congruent 
and the area of each triangle = ½ a ⋅ b.

Therefore, the sum of the area of four triangles = 2 ab.
Area of the square ABCD = c2. Area of the small square GHEF 

= (a − b)2.
Now area of square ABCD = sum of the area of four triangles 

+ area of the small square GHEF.
Therefore, c2 = 2ab + (a − b)2, simplifying we get c2 = a2 + b2 

which proves the theorem. Proof given by Leonardo da Vinci and 
Euclid are lengthy. Its proof (Murthy 1993: 158) is also given in the 
Yuktibhāṣā, commentary on the Tantra Saṁgraha.
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In the Taittirīya Saṁhitā (2000 bce) we find 362 + 152 = 392.
The method for finding the area of a triangle (Datta 1932: 96) 

that was known in Śulba.
Area of triangle = (base × altitude), by Śrīdhara the area of 

the triangle � � � � �s s a s s b s s c( ) ( ) ( )  where s is semi-perimeter of 
the triangle.

Derivation of relation abc
R4
� �  from the 

Vedic Text (Murthy 1993: 169):

=kHkqtL; o/ks Hkqt;ksf}xqf.kr yEcksèn`rks ân;jTtq%A
lk f}xq.kk f=kprqHkqZt dks.k Li`Xo`r fo"dEHk%AA 
			       µ czãLiqQV fl¼kUr% XII.27

The product of the two sides of a triangle 
divided by the altitude is equal to the radius of the circle that 
passes through the three vertices of the triangle, i.e. bc

P2  = R. Here 
b and c are two sides of the triangle and p is the altitude. R is the 
radius of the circle circumscribing the triangle. Draw a triangle 
ABC of sides a, b and c. Draw AD altitude of length p. Now draw 
a circle passing through three points ABC. Draw a diameter 2R 
from point A meeting at point E of the circle.

Consider the two triangles ABD and AEC. Angle ABD = angle 
AEC, and Angle ADB = angle ACE = 

2
π . Therefore, triangles ABD 

and AEC are similar.
Hence

AB
AE

AD
AC

c
R

P
b

bc
p

R abc
p

aR abc
p

aR ab= = = = or  or or or or 
2 2 2 4

1
2

, cc
R

ap
4

1
2

= ,

which is the area of triangle or abc
R4
� � . Kātyāyana gave the method 

of construction of a right angle triangle (Murthy 1993: 162).

;koRizek.kfu leprqj Jk.;sdhdrqZ fpdh"ksZr~ 
,dksukfu rkfu HkofUr fr;Zd~ f}xq.kkU;sdr ,dkf/
kdkfuA =;fL=kHkZofr rL;s"kq LrkRdjksfrAA

If n squares of side a are to be combined, we 
have to construct an isosceles triangle ABC 
with (n − 1) a as base and n+1

2  a as other 
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side. AD the altitude is drawn. Then AD is the side of the square 
whose area will be na2 .

To derive the rectangle contained by two sides of a triangle is 
equal to the rectangle contained by the circum-diameter (Rao 1994: 
118) and the altitude to the base, i.e. AB ⋅ AC = AD ⋅ AE.

Interpretation is “as many squares of equal side as you wish to 
combine into one of the transverses line will be one less than that 
and twice aside will be one more than that” (Datta 1932: 72-73).

For BD = ½ BC = 
n+1

2  a, AB = AC = 
n+1

2  a, by the Hypotenuse 
theorem AD2 = AB2 − BD2 = ( (n

a
n

a
+1) 1)
2 2

2 2
�
�
�

�
�
�
�

��
�
�

�
�
�
 = na2 , AD = na.

We can construct a r ight angle tr iangle of  sides 
( ) , ( ) ,n a na n a� �1

2
1

2
and  or if we put n = m2, we get sides = 

( ) , ( ) ,m a ma m a
2 21
2

1
2

� �and  such geometrical idea was used in the 
construction of a vedī.

Baudhāyana and Āpastamba list several right angle triangles 
of different measurements (Murthy 1993: 162) (triplets).

Āpastamba		             Baudhāyana

(15, 36, 39)		             (3, 4, 5 )
(12, 16, 20)		             (5, 12, 13)
(15, 20, 25)		             (8, 15, 17)
(5, 12, 13)		             (7, 24, 25)
(8, 15, 17)		             (12, 35, 37)
(12, 35, 37)		             (15, 36, 39)

Early Schools of Geometry 
Most notable were the schools of Baudhāyana, Āpastamba and 
Kātyāyana. The Hindu Geometry (Datta and Singh 1980: 121) 
originated in a very remote age in need of the construction of 
the altars. The Hindu geometry did not make much progress 
in the post-Vedic period (Datta 1929: 479). Al-Biruni, a Persian 
mathematician and traveller, made an attempt to introduce Euclid’s 
elements in India and later in the Mughal period, it was introduced 
(Law 1916: 84). Hindu name’s for geometry – the earliest name was 
śulba. In the Mānavaśulba and Maitrāyaṇīyaśulba we get the name 
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śulba vijñāna for the science of geometry. Later, Hindu geometry2 
was known as kṣetragaṇita. The treatment of plane figures is 
called kṣetragaṇita. There is a general recognition that Indian 
mathematicians of ancient and medieval time gave only rules and 
never bothered about their proof which is not completely true. 
G.R. Kaye (1914: 327) remarks: “The later Indian mathematicians 
completely ignored the mathematical content of the Śulbasūtras.”

Geometry in Jaina Culture 
The epithet (nick name) kṣetragaṇita occurs in the works of 
Siddhasena Gaṇi (550). It was also called rekhāgaṇita by Jagannātha 
(1718) and kṣetramiti by Bāpūdeva Śastrī. In Jaina works, we find 
the name rajju (Datta 1930: 126). The classification of quadrilaterals 
is found in the Jaina text SūryaPrajñapti. They are sama caturbhuja 
(square), āyata caturbhuja (rectangle), dvisama-caturbhuja (isosceles 
trapezium), trisama caturbhuja (equitrilateral trapezium) and viṣama 
caturbhuja (quadrilateral of unequal sides). Circle was termed as 
maṇḍala. In the Sūrya-Prajñapti eight types of quadrilaterals are 
given. The geometry of a circle and a straight line is the geometry of 
the Jambū Island and its symmetric mountains. The Jaina schools 
carried on an exhaustive campaign to measure every object in 
various coordinate frames.3 The Sūtrakr̥tāṇgasūtra mentions that 
geometry is the lotus in mathematics and the rest is inferior. In 
the Prajñāpanāsūtra (92 bce) by Śyāmācārya, references of solid 
geometry were given by the following gāthā:

ts l.Bk.kifj.k;k rs iatfogk i..kIrk ra tgk ifje.My l.Bk.kifj.k;k] 
ra ll.Bk.kifj.k;k] pÅjall.Bk.k ifj.k;k vk;r l.Bk.k ifj.k;kA

Geometrical Results from Jyotiṣakaraṇḍaka 
Based on Sūrya-Prajñapti
Here a is the length of arc and h is the height between chords, d 
is the diameter and c is the length of the chord of a circle. The 
following formulae are mentioned in this text. 

	 2	 The Gaṇitasāra Saṁgraha of Mahāvīrācārya (850 ce).
	 3	 Śrutaskandha, ch. I, V.154.
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Table 23.1: Some Prominent Mathematicians of the
Prākr̥ta Canonical Class and Their Works on Geometry

Mathematician Period Major Work Language
Sudharma Svāmī 300 bce Bhagavatīsūtra Ardhamāgadhī
Yativr̥ṣabha 176–609 ce Tiloyapaṇṇattī Śaurasenī Prākr̥ta
Umāsvāti Fourth 

century ce
Jambūdvīpasamāsa, 
Tattvārthādhigama-
sūtra Bhāṣya

Sanskr̥ta

Jinabhadragaṇi 600 ce Br̥hatkṣetrasamāsa 
and Laghukṣetra-
samāsa

Akalaṅka Seventh 
century ce

Tattvārthāvr̥tikā

Vīrasena 816 ce Dhavalā Śaurasenī Prākr̥ta
Nemicandra 981 ce Trilokasāra, 

Siddhāntacakravatī
Śaurasenī Prākr̥ta

Padmanandi 1000 ce Jambūdvīpapaṇṇatti-
Saṁgaho

Śaurasenī Prākr̥ta

c h d h a h c h
a c

c a h� � � � �
�

� �4 6
6

62 2
2 2

2 2( ), , , .

 Circumference of circle = 10 2d .

 Area of circle = Circumference × d
4

.

Geometrical Results from 
Tattvārthādhigmasūtra Bhāṣya

h d d c

d
c h

h

� � �� �

�
�

1
2

4

2 2

2
2

All these results are also given in the Jambūdvīpasamāsa by Umāsvāti 
and in the Laghu Saṁghāyaṇī by Haribhradha Sūri.

Geometrical Results from the Jaina School of Mathematics
In Trilokasāra V.17, it is mentioned that the circumference of a circle 
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is obtained by multiplications of diameter with three and area is 
equal to one-fourth of diameter with circumference. If we take 
approximation of the square root and apply to the result of the 
area of circle we get or

A d d d d� ��
�
�

�
�
� � ��

�
�

�
�
��2

2
2

2

4 4
1

18
By simple manipulation. 
This type of modification was also available outside India 

(first century bce). The area of circle was calculated by Heron of 
Alexandria (Waerden 1983: 18) using

A d d� �
�
�

�
�
� �

�
�
�

�
�
�3

2
1
7 2

2 2
.

In 150 ce, Nehemiah, a Hebrew Rabbi (Beckmana 1974: 76) 
gave the formula for area 

A d d d� � �2
2 2

7 14
.

Geometrical Results from the Bhāṣya of the 
Tattvārthādhigamasūtra
Let us denote the area of a circle as A, d its diameter, r its radius, 
s as arc of its segment whose height is h, c the chord and p the 
circumference. The formulae are:
	 1.	 p = 10 2d .
	 2.	 c = 4h d h( )− . 

	 3.	 s = 6 2 2h c�� � .

	 4.	 h = 1
2

2 2d d c� �� � .

	 5.	 d = h c h2
2

4
��

�
�

�
�
� � .

	 6.	 A = 1
2

p d. .

The part of the circumference of the circle between two parallel 
chords is half the difference between the corresponding arcs. All 
the above relations are also available in the Jambūdvīpasamāsa with 
the exception of (4). It instead is h = ( )s c2 2

6
− .
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In the Gaṇitasāra Saṁgraha it is given, s (gross) = ( )5 2 2h c+ , s 
(fine) = ( )6 2 2h c+ .  

In Greek Heron of Alexandria (c + 200), we find (Heath 1921, 
vol. 2: 331) s h c h� � �( )4 1

4
2 2 .

The Chinese, Chien Huo (1075 ce) gives (Mikami 1913: 62) s 
= ( )4 1

4
2 2h c h+ + . Similar formulae occur in the Kṣetrasamāsa and 

the Laghukṣetra-samāsa.

Geometrical Results from Tiloyapaṇṇattī
In the words of T.A. Saraswati Amma (1979: 76): “First four 
mahādhikāras of Tiloyapaṇṇattī is a storehouse of mathematical 
formulae”. The author had given formulae for finding the area of 
different geometrical figures, circumference of circle, length of the 
chord; the following formulae are available in the Tiloyapaṇṇattī.

P – circumference, c – chord, h – height of the chord from centre, 
s – arc, A – area, d – diameter and r – radius
	 1.	 P = 10 2d . [(v. 4.6],
	 2. 	(Chord of a quadrant arc)2 = 2r2 [v. 4.70]

	 3.	 C = 4
2 2

2 2d d h� � � �� ��

��
�

��
 [v. 4.180] J.P. gives the rule

	 4. 	 c = 4. ( )h d h−  [v. 2.23; 6.9]

	 5.	  s = 2 2 2( ) ( )d h d� ��� ��  [v. 4.181], J.P. gives the rule

	 6.	  s = 6 2 2( ) ( )h c+  [v. 2.24, 29, 6.10]

	 7.	  h = d d c
2 4 4

2 2
1
2

��
��

�
��  [v. 4.182]. Here J.P. means Jambūdvīpa Prajñapti.

The Trilokasāra furnishes the following formulae (Kapadia 
1937: XLIV). 
	 1.	  p (gross) = 3 d and p (subtle) = 10d (v. 311 )
	 2. 	A = 1/3 pd (v. 311) 
	 3.	 r = 9/16 (side of square of equal area) or = π (16/9)2 (v. 18)
	 4. 	c2 = 4h (d – h) 
	 5.	 s2 = 6h2 + c2 (v. 760)
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	 6.	 d = c h
h

2 24
4
+  (v. 761)

	 7. 	A (gross) = 10
4

c h  (v. 762) 

	 8.	 c2 = S2 – 6h2 (v. 766)

	 9. 	s2 = 4
2

h d h�� �
	 10.	 h = ( )s c2 2 6� �  (v. 763) 

	 11.	 d = 1
2 2

2a
h

h��
�
�

�
�
�  (v. 765)

	 12. 	d = 1
2

2 2d d c� �� �  (v. 764) 

	 13. 	h = d s d2 21
2

� �  (v. 765)

Similarly, the Gommasāra contains the formulae about volumes 
of a prism, as base into height. The volume of a sphere is equal to 
9/2 (radius). There is a gāthā 1.24 of the Jambūdvīpasamāsa to find 
the area of the circle:

foD[kaHkpnqCHkkxs.k laxq.ka gksbZ ifjf/ ifjek.ka A
in~jxna [ksÙkiQya y}a jfoeaMyk.k rgk AA 

In the above gāthā the formula for the area of a circular thing is 
given.

The area is A c d
� �

4
, where c is the circumference and d is the 

diameter. We also find the formulae for the chord, length of the 
arc, height of chord from the lowest point of the circle and other 
result. These types of results are also given in the Lokavibhāga text. 

pnqxq.kblwfg Hkftna thokoXxa iq.kksa fo blqlfgna A
ifjeaMy[ksRrLl nq foD[kaHka gksb .kk;Ooa AA

				     – Gāthā 2.26
Explanation: In the above gāthā, the formula for the diameter of 
the circle is given as:

dia chord
height

height� �( )
( )

.
2

4
In the Sūrya-Prajñapti it was known by Viṣamacakravāla. 

Menaechmus (c.350 bce) (Heath 1921, vol. I: 11) obtained ellipse 
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by cutting an acute angled cone by plane perpendicular to it and 
hyperbola from right and obtuse-angled cone.

Perimeter of the ellipse = 4 62 2a b+  = P (Parameter)
And area of the ellipse = P b b a b� �2

4 2
4 62 2 .  

Takao Hayashi (1990: 5) points that the terminology 
for the breadth (2b) and for the length (2a) implies 
the condition b ≤ a.

Geometry in Bhagavatīsūtra 
The geometrical figures such as triangle, quadrilateral, circle, 
rectangle and ellipse are mentioned in it.4 This text has 656 gāthās 
containing mathematical results of solid geometry and plane 
geometry. Malayagiri wrote commentary on it (Upadhyaya 
1971: 241). Jinabhadragaṇi Kṣamāśramaṇa (609 ce) wrote this 
mathematical book. Jinabhadragaṇi explains by a mathematical 
formula in gāthā 122 how to find the area of different regions of 
Jambūdvīpa. The author gives a method to find circular area 
between two parallel chords of the circle in the gāthā (Gupta 1987: 
60-62). Given the length of small chord AB = a and length of big 
chord CD = b, the distance between the two chords, LN = h.

According to the mathematical law given, the area of circular 
region ABFDCEA is:

K a b h� �
�
��

�
��
�1

2
2 2( )

fig. 23.1: Area of Circular Region

The detail of this result is as follow. The area of trapezium 
ABHDCGA inside the required circular part5 is T = 1/2 (a + b) h. 
However, this is less than the required area. So using

	 4	 Bhagavatīsūtra, śataka 24, uddeśaka 3.
	 5	 Br̥hatkṣetrasamāsa, A-1, gāthā 64.
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However, the first result gives more value of the area than its 
exact value. The explanation is as follows – Let the length of the 
chord = C and the Height of the segment = g. Then using this result 
of ancient time we have 4g (2R – g) = C2, where R is the radius of 
the circle. This formula was known to Jinabhadragaṇi6 using this 
result; we can find the length of the chord EF that is the middle 
chord between AB and CD chords. Its length is – (EF)2 = 1/2(a2 + 
b2) + h2. Therefore, we can consider the effective average length of 
the chord, which is approximately taken as 1

2
2 2( )a b+ .

When it is multiplied by h we get the required results which 
is same as given by Jinabhadragaṇi.

Table 23.2: Comparison of Circumference and Area of 
Circle in Different Jaina Texts

Text 
Formula

TP GSS JPS TS Modern 
Value

C i rc u m -
ference 
of the 
circle

c d� �2 210
C = 3 × d

c d� �2 210
C d d� � �10 C = 3 × d

C d� �10

C = 2πr

A r e a  o f 
the circle A C d� �

4 A d� �� �3
2

2

A d� � ��

�
�

�

�
�10

2

2 2

A C d� �
4

A C d� �
4

C = 2πr

	 6	 Br̥hatkṣetrasamāsa, A-1, gāthā 36.
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Table 23.3: Comparisons of the Relation between Chord, Height of the 
Chord, Arc and Diameter of a Circle in Different Jaina Texts

Text 
Formula

TP JPS TS LV

Chord 
in terms
of h and 
d

c d d h� � � � �� ��

��
�

��
4

2 2

2 2 c d h h� � � �( ) 4 c h d h2 4� � �( ) c d h h� � � �( ) 4

h in
terms of
c and d

h d d c� � � � �
2 2

1
4

2
2 h d d c� � �2 2

2
h d d c� � �2 2

2

–

d in
terms of
c and h

d c
h

h� �
2

4.
d h c

h
� �

�

2

4
d c h

h
� � �

�

2 24
4

–

a in
terms of
c and h

a2 = 6h2 + c2 a2 = 6 × h2 + c2 a2 = 6 × h2 + c2 a2 = 6 × h2 + c2

Here C – circumference, d – diameter and A – area 
Length of Chord = c, Diameter = d, Length of the arc = a 
Height of the chord from the lowest point of the circle. = h,
TP = Tiloyapaṇṇattī, JPS = Jambūdvīpapaṇṇattī Saṁgaho, TS = Trilokasāra,  

        LV = Lokavibhāga, GSS – Gaṇitasāra Saṁgraha

Modern Geometry 
In the early seventeenth century, there were two important 
developments in geometry. The first and most important was 
the creation of analytic geometry by René Descartes (1596–1650) 
and Pierre de Fermat (1601-65). Since then, and into modern 
times, geometry has expanded into non-Euclidean geometry 
and manifolds, describing spaces that lie beyond the normal 
range of human experience. This was a necessary pioneer to the 
development of calculus. The second geometric development of 
this period was the systematic study of projective geometry by 
Girard Desargues (1591–1661). Projective geometry is the study of 
geometry without measurement, just the study of how points align 
with each other (Rosenfeld and Yausehkeviten 1996, vol. 2: 470). 
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The Eighteenth and Nineteenth Centuries: 
Non-Euclidean Geometry
The very old problem of proving Euclid’s Fifth Postulate, the 
“Parallel Postulate”, from his first four postulates had never been 
forgotten. Giovani Girdamo Saccheri (1701), John Heinrich Lambert 
(1760), and Adrien Marie Legendre (1799) each did excellent work on 
the problem in the eighteenth century. Beginning to suspect that it 
was impossible to prove the Parallel Postulate, they set out to develop 
a self-consistent geometry in which that postulate was false. In this 
they were successful, thus creating the first non-Euclidean geometry.

In the twentieth century, David Hilbert (1862–1943) employed 
axiomatic reasoning in an attempt to provide a modern foundation 
of geometry. Analytic geometry applies methods of algebra to 
geometric questions, typically by relating geometric curves to 
algebraic equations. Euler called this new branch of geometry 
geometria situs (geometry of place), but it is now known as 
topology. Topology grew out of geometry, but turned into a large 
independent discipline. 

Application
Geometry has applications in many areas, including cryptography, 
the art of writing or solving codes and in string theory (string 
theory is a theoretical framework in which the point-like particles 
of particle physics are replaced by one-dimensional objects called 
strings). Discrete geometry is concerned mainly with questions of 
relative position of simple geometric objects, such as points, lines and 
circles. Euclidean geometry also has applications in computer science, 
crystallography (crystallography is a technique used for determining 
the atomic and molecular structure of a crystal) and various branches 
of modern mathematics. An important area of application is number 
theory. In ancient Greece the Pythagoreans considered the role of 
numbers in geometry. Since the nineteenth century, geometry has 
been used for solving problems in number theory, for example, 
through the geometry of numbers or, more recently, scheme theory, 
which is used in Wiles’s proof of Fermat’s Last Theorem.
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Conclusion
We found that geometry is well explained in all the philosophical and 
mathematical texts of different cultures. Mathematicians and others 
developed geometry for different purposes. There was a pervasive 
fascination with geometrical results. It will motivate further studies 
and research of ancient and medieval geometry. We have shown 
that geometry grew independently in different cultures. Indians had 
also good knowledge of geometrical calculations and their approach 
was scientific. We should not forget that all these accomplishments 
were made in the absence of the modern mathematical techniques. 
Indian ancient texts remained unexposed to the Western countries 
due to several reasons and the history was written by English so 
no importance was given to Indian mathematicians by foreigners 
(Dange 1972). Certainly, it seems that Indian contributions to 
geometry has not been given due acknowledgement until very 
recently in modern history of mathematics.

References
Amma, T.A. Sarasvati, 1979, Geometry in Ancient and Medieval India, Delhi: 

Motilal Banarsidass.

Beckmann, Petr, 1974, A History of π, New York: St. Martine’s Press.

Benjanin, Boyer Carl, 1968, “Ionia and Pythagoreans”, A History of 
Mathematics, USA: John Wiley and Sons. 

Boyer, Carl Benjanin, 1991, “Ionia and the Pythagoreans”, A History of 
Mathematics, New York: John Wiley.

Br̥hatkṣetrasamāsa, Acharya Jinbhadragani-krita, Malayagiri krit Vritti 
Sahit, Bhavanagar, 1977.

Casey, John, 1885, Analytic Geometry of the Point, Line, Circle, and Conic 
Sections, London: Longmins Greens Co. 

Datta B.B., 1929, “Scope and Development of the Hindu Gaṇita”, Ind. 
His. Quart., V.

———, 1930, “Origin and History of the Hindu Names for Geometry”, 
Qullen and Studien sur Gesehishte der Mathematik, B.I.: 113-19.

———, 1932, The Science of Śulba, Calcutta: Calcutta University Press.



420  | History and Development of Mathematics in India

Datta B.B. and A.N. Singh, 1980, “Hindu Geometry”, IJHS, 15(2).

Dange, S.A., 1972, “India 5th edn”, New Delhi: People’s Publishing House. 

Eves, Howard, 1990, An Introduction to the History of Mathematics, 
Philadephia, PA: Saunders. 

Forbes, Peter, 2012, “All That Useless Beauty, The Guardian”, Review: 
Non-fiction, 11 February.

Friberg, J., 1981, “Methods and Traditions of Babylonian Mathematics: 
Plimpton 322, Pythagorean Triples, and the Babylonian Triangle 
Parameter Equations”, Historia Mathematica, 8: 277-318.

Gerla, G., 1995, “Pointless Geometries”, in  Handbook of Incidence Geometry: 
Buildings and Foundations, ed. F. Buekenhout and W. Kantor, pp. 1015-
31, Amsterdam: North Holland Publishing Co..

Gupta, Radhacharan, Jinabhadragaṇi ke eka Jyāmitīya Sūtra kā Rahasya: Astha 
and Chintan, Acharya Desh Bhushan Abhinandan Granth, Delhi: Jain 
Prachya Vidya. 

Hayashi, Takao, 1990, “Narayana’s Rule for a Segment of Circle”, Ganita 
Bharati, 12: 1-9. 

Hayashi, Takao, 1995, The Bakhshali Manuscripts: An Ancient Indian 
Mathematical Treatise, Groningen Oriental Studies, Jan.

Heath, Thomas, 1921, A History of Greek Mathematics, vols I-II, London: 
Oxford University Press, repr 1960.

Hogben, Lancelot, 1967, Mathematics for Millions, London: Pan Macmillan.

Kapadia, H.R., 1937, Bhagavatīsūtra, śataka 24 , uddeśaka 3, Introduction 
of Gaṇita Tilaka, p. XLIV, Baroda: Oriental Research Institute.

Kaye, G.R., 1914, Indian Mathematics, Calcutta Shimla: Thacker, Spink 
and Co.

Lambert, Johann Heinrich, 1760, Photometria Book. 

Law, N. N., 1916, Promotion of Learning in India during Muhammadan Rule, 
London: Longmans Green & Co..

Legendre, Adrien Marie, 1799, Elements of Geometry.

Mackay, E.J.H., 1938, Further Excavation at Mohenjo-daro, Delhi: The 
Manager Controller of Publications Government of India.

Mikami, Yoshio, 1913, The Development of Mathematics in China and Japan, 
Leipzig, B.G. Teubner and Williams and Norgate, London.



|  421Geometry in Ancient and Medieval Cultures

Murthy, T.S. Bhanu, 1993, A Modern Introduction to Ancient Indian 
Mathematics, New Delhi: New Age International Publishers.

Munkres, James R., 2000, Topology, vol. 2, Upper Saddle River, NJ: 
Prentice Hall. 

Needham, Joseph, 1959, Science and Civilization in China, vol. 3: Mathematics 
and the Sciences of the Heavens and the Earth, Taipei: Caves Books.

Neugebauer, Otto (ed.), 1969, The Exact Sciences in Antiquity 2, chap. IV: 
“Egyptian Mathematics and Astronomy”, pp. 71-96, New York: Dover 
Publications.

Rao, S. Balachandra, 1994, Indian Mathematics and Astronomy, Bongalore: 
Jnana Deepa Publications. 

Rashed, R., 1994, The Development of Arabic Mathematics: Between Arithmetic 
and Algebra, London: Kluwer.

Risi, Vincenz De, 1701, Giovani Girdamo Saccheri Euclid, Vindicated, tr. 
G.B. Halasted. 

Rosenfeld, Boris A. and Adolf P. Youschkevitch, 1996, “Geometry”, in 
Encyclopedia of the History of Arabic Science, ed. Roshdi Rashed, vol. 2, 
pp. 447-94, London and New York: Routledge.

Saccheri, Giovani Girdano, 1701, Euclid, Vindicated Vincenz de Disi, tr. 
G.B. Halasted.

Sayili, Aydin, 1960,“Thabit ibn Qurra’s Generalization of the Pythagorean 
Theorem”, Isis, 51(1): 35-37.

Schmidt, W., R. Houang and L. Cogan, 2002, “A Coherent Curriculum”, 
American Educator, 26(2): 1-18.

Steen, L.A., 1998, “The Science of Patterns”, Science, 240: 611-16, Summary 
at ascd.org.

Stewart, Ian, 2001, “What Shape is a Snowflake”, in Magical Number in 
Nature, pp. 48-49, New York: Henry Holt and Company.

Tattvārthādhiganasūtra, Acharya Umaswati, English tr. K.P. Modi 1st Part, 
1903 and H.L. Kapadia, 2nd part, 1926, Baroda: Gaikwad Oriental 
Institute Series. 

Turner, Martin J., Jonathan M. Blackledge and Patrick R. Andrews, 1998, 
Fractal Geometry in Digital Imaging, Cambridge, MA: Academic Press.



422  | History and Development of Mathematics in India

Trilokasara, Acharya Nemichandra Siddhant Chakravarti, 2nd edn, Gannor, 
Haryana: Sahitya Bharati Prakashan, 2005.

Upadhyaya, B.L. 1971, Prācīna Bhāratīya Gaṇita, Delhi: Vigyan Bharati.

Waerden, van der, 1983, Geometry and Algebra in Ancient Civilizations, 
New York: Springer-Verlag.



28

Life and Works of T.A. Saraswati Amma 
and Suggestions for Future Work 

in Geometry

P.S. Chandrasekaran

Abstract: T.A. Saraswati Amma’s early life, education and 
academic career have been briefly described. Her modern 
approach to prove some of the sūtras and her systematic 
chronicling of the developments in geometry in India from 
ancient times to early seventeenth century have been highlighted. 
A few suggestions for further work including examples, thereof, 
have been provided.

T.A. Saraswati Amma, the Sanskrit scholar and mathematician 
par excellence, who has contributed immensely to the recording 
of Indian geometry was born as the second daughter of Achyuta 
Menon and Kuttimalu at Cherpulassery in Kerala in the year 1918.

She had her basic graduation from the University of Madras, 
with Physics and Mathematics as her main subjects. She then took 
her MA in Sanskrit from the Banaras Hindu University and MA 
in English Literature from Bihar.

After her studies, Saraswati Amma worked for a number of 
years in the Sree Kerala Varma College, Trissur and the Maharaja 
College, Ernakulam. In the year 1957, she joined the Sanskrit 
Department of University of Madras as a Government of India 
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Research Scholar and came under the guidance and mentorship 
of the great Indologist V. Raghavan.

Raghavan, who clearly saw her huge potential, advised 
her to take up research in the field of Indian contributions to 
mathematics.

Saraswati Amma’s talent bloomed under Raghavan’s watchful 
eyes and she could bring to bear her considerable erudition in 
both Sanskrit and mathematics on the texts she laid her hands on. 
Being a Malayalee helped her considerably as many of the exciting 
developments in the post-Bhāskara II phase were concentrated 
in Kerala and she could easily understand and analyse the texts, 
which were in Malayalam.

Her research work was completed in 1963 and she was awarded 
a doctorate degree in 1964. Much as she tried, she could not publish 
her research work till 1979. The book which was published by 
Motilal Banarsidass under the title Geometry in Ancient and Medieval 
India, drew rare reviews and catapulted her to instant celebrity 
status. The book traces the History of Indian mathematics from 
the Vedic times to the early seventeenth century. Besides providing 
proofs of many mathematical formulae, she also drove home the 
point that some of the discoveries in India preceded those of the 
West by three to four centuries.

After retirement from the principal’s post at Dhanbad, 
where she worked last, Saraswati Amma moved to her home in 
Ernakulam to attend to family work and her aged mother. She 
shifted to Ottappalam subsequently. Because of family issues she 
could not continue her research work and breathed her last on 15 
August 2000. 

It is noteworthy that no subsequent work on Indian geometry 
has come about, though it is almost forty-two years since her 
book was first published. This in itself is an ample testimony to 
the comprehensive and thorough nature of her treatment of the 
subject.

Saraswati Amma justifiably introduces her book as the third 
in a series of books on Indian mathematics, succeeding Parts I and 
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II of the History of Hindu Mathematics by Bibhutbhushan Datta and 
Awadesh Narayan Singh.

The text Geometry in Ancient and Medieval India contains ten 
chapters. In the first chapter which forms the introduction, the 
author gives a brief history of Indian mathematics beginning with 
the Vedic period, up to the seventeenth century ce. The author 
explains that the absence of proof in many of the sūtras is due to 
the fact that mathematical knowledge for its own sake did not 
interest the Indian scholars and that the mathematical knowledge 
was deeply rooted in its applied nature. However, proofs were 
given in later-day commentaries for many sūtras.

Chapter II is devoted to the “Śulbasūtras”. Many important 
features of the same such as the theorem of the square of the 
diagonal, construction of squares, rectangles and trapezia, 
combination and subtraction of areas, properties of similar figures 
and areas, etc. are explained in great detail.

Chapter III deals with geometry as found in early Jaina 
canonical texts. The value of √10 for π, solid figures, relations 
between chord lengths, height of chords and areas of segments 
have been explained in this chapter.

The balance chapters are arranged subject-wise. Chapters IV-
VII deal with trapezia, quadrilaterals, triangles and circles. 

The chapter on trapezia deals with the treatment of the subject 
in early Jaina literature as well as by Āryabhaṭa I, Brahmagupta, 
Mahāvīra and later authors like Śrīpati and Bhāskara.

The chapter on quadrilateral gives a detailed exposition of the 
cyclic and non-cyclic quadrilaterals and an in-depth discussion on 
Brahmagupta’s treatment as well as analysis by the Kriyākramakarī 
Yuktibhāṣā, etc.

Chapter VIII is on volumes and surfaces of pyramid, formation 
of a cone, sphere, etc. are dealt with. The surface area and volumes 
of spheres are derived by integration methods.

Chapter IX deals with geometric algebra, where the practice 
of representing and solving algebraic and arithmetical problems 
geometrically is explained in detail.
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Chapter X deals with shadow measurements and calculations 
which form an important part of astronomy and therefore of 
mathematics from very early texts. 

Saraswati Amma’s Methods of 
Handling Some Important Topics 

SEGMENTS OF CIRCLES

One of the important relations in a segment of circle is that 
connecting the arc length to the height of twice the arc h and the 
sine chord S.

The expression is 
	 a1 = √(h2 (1 + 1/3) + s2)
	 a1 = arc length AB
	  h = height of twice the arc, i.e. ABC
	   s = sine chord. 
Saraswati Amma (2007: 180-82) derives the formula by dividing the 
arc successively into half of the original size till the arc becomes 
so small, to be considered equal to the chord. The height in each 
case is expressed in terms of the original height.

A geometric progression is formed and the sum up to ∞ leads 
to the simple expression for a1 in terms of s and h.

Two principles of calculus are used here:
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	 i.	 A very small length of a curve is equal to the chord joining 
the two end points.

	 ii.	 Integration as a sum.

CYCLIC QUADRILATERALS

In his review of the book, the Japanese scholar Michio Yano states 
that “Saraswati’s discussion of the cyclic quadrilaterals treated by 
Brhamagupta reveals her remarkable competence in dealing with 
mathematical Sanskrit texts”.

The scholar further states that “the proofs of the well-known 
‘Brhamagupta’s theorem’ and his formula for the area of the cyclic 
quadrilaterals are reproduced by the author according to the 
sixteenth-century works such as the Tantra Saṁgraha, Yuktibhāṣā 
and Kriyākramakarī.

While deriving the various formulae for a quadrilateral, 
Saraswati Amma freely uses the facts that:
	 i.	 Angle in a semi-circle is a right angle. 
	 ii.	 Angles in the same segment of a circle are equal and she also 

feels that perhaps these results were known in India much 
earlier.

She further derives some trigonometric results, based on 
Yuktibhāṣā, such as: 
	 i.	 sin2 A − sin2 B = sin (A + B) sin (A − B)
	 ii.	 sin A sin B = sin2 (A + B)/2 − sin2 (A − B)/2
	 iii.	 sin (A ± B) = sin A cos B ± cos A sin B

TRIGNOMETRIC AND INVERSE TRIGNOMETRIC SERIES

Yano describes the chapter VII the most remarkable chapter of 
the geometry in ancient and medieval India “which shows an 
outstanding aspect of Indian mathematics – the discovery of the 
infinite series of π, and of sine and cosine series.

Through a lengthy procedure, Saraswati Amma derives the 
series formulae for sin ø and cos ø, viz.

sin ø = ø − ø3/3! + ø5/5! .......  
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cos ø = 1 − ø2/2! + ø4/4! .......
The series were known in Europe by the seventeenth century 
whereas in India they were known as early as in the fourteenth 
century.

Similarly Saraswati Amma describes a method to evaluate π 
as a series:

π/4 = 1 − 1/3 − + 1/5 – 1/7 ...
which was enunciated by Gregory three centuries later in the form 
of series for ø in terms of tan ø, viz.

ø = tan ø – (tan3 ø)/3 + (tan5 ø)/5 ...
which can be reduced to the series shown above putting tan ø = 
x and x = 1.

Major Achievements of Saraswati Amma 
	 1.	 Saraswati Amma deals with the development of geometry 

in India right from the period of Śulbasūtras up to early 
seventeenth century. 

		  In this respect her book is rightfully a successor to the two 
volumes by Datta and Singh.

		  Though there appear to be no other books published by her, 
yet this single work places her on a unique pedestal among 
the scholars of Indian mathematics.

	 2.	 Being a Keralite, Saraswati Amma was in an advantageous 
position to analyse the various Malayalam manuscripts 
of the post-Bhāskara II phase. She diligently culled out, 
analysed and compared various approaches in geometry 
in Indian mathematics including famous works and 
commentaries.

	 3.	 She has used the concepts of algebra and calculus, etc. to 
illustrate the correctness of some of the formulae from our 
old texts.

		  The surface area and volume of the sphere have been derived 
using the principles of integration by the author.

	 4.	 Though her doctoral thesis was made in 1963, Saraswati 
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Amma could not get it published in book form till 1979. It 
shows the strong will and perseverance of Saraswati Amma 
that she finally succeeded, even without the official funds 
materializing for publishing the book.

	 5.	 In the rarely touched upon field of Indian geometry, 
Saraswati Amma succeeded, and succeeded remarkably 
well.

It is a work of such greatness that even after forty-two years 
of her publication, there has been no sequel to her work.

Scope for Further Research
While it is true that Saraswati Amma has comprehensively dealt 
with all the features of various geometric figures in her book, 
there is also scope for further work in areas that the author has 
only briefly touched upon, due to paucity of time and space. Two 
such cases are presented here.

One example is the subject of regular polygons inscribed in 
a circle, where the author, referring to Bhāskara, states that his 
method of calculating the values of the sides are not known. She 
also remarks (2007: 192-93) that Gaṅgeśa’s method of dividing the 
circumference into as many equal parts and evaluating the chord 
corresponding to one division using the sine table does not yield 
results exactly tallying with those of Bhāskara.

The topic has been dealt with in subsequent literature, viz. 
Bhāskarācārya’s Līlāvatī by A.B. Padmanabha Rao (2014: 129-32). 
Geometric methods have been provided by the Buddhivilāsini 
but only for sides of 3, 4, 6 and 8. Rao has suggested a geometric 
method for a pentagon while quoting the Buddhivilāsinī that 
the heptagon and nanogon cannot be treated by any geometric 
procedure. 

An attempt is made here to derive the sides of a regular 
polygon of n sides, inscribed in a circle, through simplification and 
restatement of Bhāskara’s sūtras for the chord of a circle. There is 
a very good closeness of the results obtained to the values stated 
by Bhāskara.
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In śloka 219 of the Līlāvatī, Bhāskara enunciates the formula 
for the chord of a circle, thus:

pkiksufu?uifjf/% çFkekÞo;% L;kr~i×k~pkgr% ifjf/oxZprqFkZHkkx%A
vk|ksfursu •yq rsu HktsPprq?uZ O;klgre~ çFkeçkIrfeg T;dk L;kr~AA

The circumference diminished and multiplied by the arc shall be 
called the prathamā. One quarter of the circumference squared 
multiplied by 5 is to be diminished by the prathamā. The prathamā 
multiplied by 4 and the diameter should be divided by the above 
result. The quotient will be the chord.

Thus, if c is the chord of the arc a and if d and p are diameter 
and circumference of the circle whose part the arc is 
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When a regular polygon of n sides is inscribed in a circle, it divides 
the circle into n equal arcs, each of length p/n.
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This formula which does not involve the arc length a and perimeter 
p can be used to compute the side of the polygon, viz. c.

In ślokas 206-08, the Līlāvatī lists the lengths and sides of regular 
polygons of sides 3 to 9 inscribed in a circle of diameter 120,000 
units thus:
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No. of Sides	 Side Length When d = 1,20,000

3				    103,923

4			    	  84,853

5				      70,534

6				      60,000

7				      52,055

8				      45,922

9				        41,031

The table below shows the values of the sides as stated by Bhāskara 
and the values derived by using restated formula, and also the 
percentage deviations. It may be seen that the derived values in 
column 3 very well with those of column 2.

No. of 	 Length as per	 Length as per 	 Percentage 	
Sides	 Sūtra		  Restated Formula	 Deviation

3			   103,923		  103,788		 − 0.130

4 			   84,853		  84,708		 − 0.171

5			   70,534		  70,452		 − 0.116

6 			   60,000 		  60,000	  	  0.000

7			   52,055		  52,128		     0.140

8 			   45,922 		  46,032		    0.240

9 			   41,031 		  41,172 	  	  0.344

The restated formula is thus useful for any n-sided polygon and 
not limited to 9. The restated formula actually represents d sin 
π/n and is used as an alternative to looking up the sin tables or 
evaluation of the side length. 

Another case involves a number of series for π attributed to 
Mādhava where Saraswati Amma states that the series can be got 
by regrouping the terms of the series 

π/4 = 1 – 1/3 + 1/5 ..., etc.
but does not indicate how the regrouping is to be done.
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We can use a generalized method, using a common approach 
for writing the nth term, splitting it and then writing down the 
sum of the series.

Conclusion
Raghavan in his introduction to Saraswati Amma’s book says 
that the material available should be interpreted in terms of 
modern knowledge in the concerned sciences. It is in this respect 
that Saraswati Amma’s contribution should be assessed, as 
she was one of a kind combining in herself deep knowledge of 
Sanskrit, Malayalam and English and an equal command over 
mathematics and sciences. Her book thus marks a milestone in the 
understanding and appreciation of Indian mathematics.

Further, Saraswati Amma has stated in her work that irregular 
shapes in geometry have not been taken up in her book. These 
may be attempted. Some of her proofs may also be derived from 
the use of trigonometric formulae wherever possible. 
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Indian Math Story 
Website dedicated to History of 

Indian Mathematics
https://indianmathstory.com 

Pattisapu Sarada Devi 

Abstract: I shall present here a website: https://indianmathstory.
com, developed by me in 2018, which is a chronicle of my efforts 
in history of Indian mathematics. I am positive that this will 
encourage and motivate the students and researchers of this 
subject. This website consists of:

	 a.	Various conferences on this subject that I participated from 	
		   year 2000 onwards. 

	 b.	 Titles of several reference books and names of the journals. 

	 c.	 Names of several resource persons – questions/puzzles on  
		   history of Indian mathematics. 

	 d.	 Links of Resource Videos – Mathematical Tourism in India. 

	 e.	 About the play Journey through Maths: The Crest of the Peacock 
		   that I have developed and staged. 

	 f.	  Honours programmes that I had conducted at St. Xavier’s 
		    College, Mumbai. 

This website is a continuous saga as it has room for various 
additions in the future. I welcome all your valuable suggestions. 
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Introduction
In 2000, World Mathematics Year, I had developed a play on history 
of Indian mathematics. I thank the staff of HBCSE, Mumbai and 
School of Mathematics, TIFR, Mumbai for their support and 
encouragement for developing the play, especially for the research 
material. A token amount was obtained from HBCSE, Mumbai for 
the stationary and reference material for the research. The script of 
the play, Journey through Math: The Crest of the Peacock, developed 
with the help of the students of St. Xavier’s College, Mumbai. It was 
staged at several places later on. One of the observations was that 
there is zero amount of awareness of history of Indian mathematics 
not only among the students but also among mathematics teachers. 
It is like roots of the present generation had almost been cut from 
their heritage. Hence, my interest in this unattended subject 
grew and that made me start attending the various conferences 
held on this subject, which is the history of Indian mathematics, 
from 2000 onwards. I have also conducted honours programme 
for three years at St. Xavier’s College where I used to work as a 
lecturer for more than twenty years. After my retirement, I found 
the necessity to document all my efforts in this subject. Hence this 
website: https://indianmathstory.com. 

About the Website 
This website contains altogether thirty-nine tabs including fourteen 
main tabs and various sub-tabs. This number is dynamic.

fig. 29.1: Main Tab 1
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fig. 29.2: Main Tab 1 

About Tab 1: Rediscovering the Roots 
It starts with catchy headings like “Re-Discovering the Roots” 
and “Conserving our precious past for a marvellous future …”.

fig. 29.3: Our Irreplaceable Heritage of Millenniums

Audio of a śloka has been included with the heading “The below 
music might strike a chord in you ...”.

Then objective of the site is explained: 

… is to bring to the notice of today’s youth about our rich 
mathematical heritage – the Indian heritage of innovating 
ideas, and of astonishingly advanced thoughts and the beautiful 
amalgamation of the arts and mathematics. Also it is proposed to 
pay homage to all those Indian mathematicians whose immense 
contributions to this universal subject have not been duly 
recognized. This knowledge of “History of Indian Mathematics” 
would lead the young minds to realize that mathematics is not 
only a subject, but also a part of their culture. 

This tab will connect us to the 2nd tab “Maths in Theatre”. 
Here, about the beginning of this initiative is explained. I 
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express my gratitude to my students and all who lent a helping 
hand in putting up this play. A short video, first 15 minutes of the 
play, is also uploaded. Excerpts from an article published in The 
Hindu newspaper of Hyderabad edition on 12 December 2000 with 
picture of media coverage in the background are put up. 

This tab will connect us to the sub-tab, “Maths Drama: Journey 
through Maths – Crest of the Peacock”, of main tab “Maths in 
Theatre”. 

In this sub-tab, gist of the content of the play is provided: 

The story starts from Indus Valley civilization, Vedic period, Jaina 
Mathematics, Bhakśāli Manuscript, Āryabhaṭa, Brahmagupta, 
Mahāvīrācārya, Bhāskarācārya, Story of Zero and Decimal 
System, Mādhavācārya & Mathematics from Kerala School and 
ends with tributes to Śrīnivāsa Rāmānujan (that way showcasing 
history of 5,000 years). A blend of folk narrative art form called 
“Burra Katha” of Andhra Pradesh and present-day technology 
is the medium of narration. This play includes five dance 
sequences, a few Sanskrit ślokas and about 80 slides. 

In ancient India, mathematics was not only a subject, but also it 
was part of the culture. The questions on maths used to be on 
birds, bees, animals, rivers and flowers. Maths was applied in 
temple architecture, music, śrī yantras and magic squares. But, 
surprisingly, the subject was also quite advanced then. Calculus, 
a very important branch of mathematics has its origins in Kerala 
(fourteenth and seventeenth century). 

In history, one will come across the “so-called Pythagoras 
Theorem”, “so-called Pascal triangle”, “so-called Pells equation”. 

It is quite wonderful to know how Trigonometric ratio “Sine” 
got its name. 

Duration of the play is approximately one hour. A team of 10 
persons is performing. 

Also, there is a call for the people who would like to promote this 
initiative. 
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We are looking for individuals/institutions interested in 
promoting this project. Theatre is an effective tool to peep into 
India’s glorious past and an opportunity to catch a few insights 
into mathematics and a few “values” as well. 

Benefits of studying history of Indian mathematics are mentioned 
along with a few recommendations and aspirations. 

This sub-tab will connect us to the sub-tab “August Audience”. 
Background picture of audience has been provided. 

The play was performed before: 
	 1.	 Science educators and others of HBCSE, TIFR, Mumbai on 

28 February 2000.
	 2.	 The scientists of Tata Institute of Fundamental Research, 

Mumbai on 18 April 2000 (World Heritage Day). 
	 3.	 Delegates of International Conference on Statistics, 

(organized on the occasion of Professor C.R. Rao’s 80th 

birthday celebrations), Hyderabad on 13 December 2000. 
	 4.	 To the faculty of the University of Hyderabad on 13 

December 2000. 
	 5.	 Delegates of International Conference on History of 

Mathematical Sciences, Delhi in December 2002. 
	 6.	 Students of different schools and colleges in Mumbai, 

Hyderabad and Delhi. 
	 7.	 Students of St. Ann’s School, Fort; Ruia College, K.C. College, 

Mumbai, and the students who attended National Science 
Day celebrations, etc. 

	 8.	 A drama academy “Magic If” had taken this play as a 
project and performed in schools of Hyderabad for 50 times. 
Efforts of Mr Raj Shekhar, the director of the academy, are 
appreciated. 

This sub-tab connects us to the “media coverage”. Press coverage 
on my efforts over the years is on display in this. 

Media sub-tab connects to the sub-tab “testimonials”. A few 
of the testimonials are displayed below: 
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fig. 29.4                  fig. 29.5                        

fig. 29.6

               

fig. 29.7

fig. 29.8
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The script,  presentation and 
explanation of the show “journey 
through maths – The crest of the 
peacock” are excellent.
– C.R. Rao, Pennsylvania State 
University

fig. 29.9

       Dear Contributors of the documentary,
the play had been successfully enacted not only 
enacted but also for enlightening us about the 
glorious past. Thanks to the school of fine arts for 
having rendered their cooperation towards success. 
My sincere gratitude to the narrator and the director 
for their deep interest and the idea of implementing 
and staging it. The play is indeed one of rare ones of 
the modern times. Hope you would prepare such 
programs in future also. Wish you all grand success.
– T. Hema, BSc, St. Francis College

fig. 29.10

Testimonials sub-tab connects us to gallery. 

fig. 29.11 fig. 29.12

This main tab concludes here. 
Now we will move on to the third tab “Math (Hi)Story” to 

explore more. In the main tab, many video links are provided 
which enable the amateur in this to know more. A part of history 
of Indian mathematics is briefly narrated in six sub-tabs and by a 
main tab “Role Models/Unsung Heroes”. 

The story of Indian mathematics which begins with Indus 
Valley Civilization, around 3000 bce and come all the way to the 
twentieth century that’s 5,000 years!!. 

The stages in this journey are: 

Indus Valley (3500 bce) Mathematics in Vedic 
Saṁhitās (1750 bce) 

Śulbasūtras (600–200 bce) Maths in Ancient Jaina 
works (300 bce to 200 ce) 
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Bhakśāli manuscript (300 ce)  Āryabhaṭa (476 ce)

Brahmagupta (598 ce) Mahāvīracārya (ninth 
century) 

Bhāskarācārya (1114 ce) 
Mādhavācārya and works From Kerala (fourteenth 

to nineteenth century)
Śrīnivāsa Rāmānujan (22 December 1887 – 26 

April 1920)

In this journey, one would also examine the spread of zero and 
decimal system from India to Arabia and then to Europe. 

The following additions are there in these sub-tabs: 
	 a.	 An article in the form of a English lesson to 10th/11th standard 

presented by Sarada Devi on “Role models from our cultural 
roots” at Pune conference in 2014. 

	 b.	 The letters between Hardy and Rāmānujan are presented 
in a poster form. 

In the sub-tab “Unsung Heros”, a small list of the names of 
the mathematicians from the ancient past is provided. This tab 
leads to main tab “Manuscripts”. 

This tab starts in the following way: 

A leaf might contain huge wealth of knowledge such as a new 
branch of science, a method to prepare life-saving medicine … 
who knows what it can bestow on us. 

India WAKE UP ... Conserve them, preserve them. Your heritage 
needs you. 

India ... RISE AGAIN Uttiṣṭha … Bhārata  

In this tab, the pathetic state of manuscript is briefly discussed. A 
monologue by a personified manuscript is provided. A few useful 
links are also given, e.g. https://namami.gov.in/ 

This tab connects us to the main tab “Books/Magazines”. A 
small list of the books is provided. The contents of this tab will 
keep increasing in the future. 
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This main tab connects us to another main tab “Video Links”. 
This tab contains rich resource material for the researchers as many 
video links by top historians are provided. This main tab connects 
us to another main tab “Conferences”. 

In this main tab “Conferences”, I have included all the scanned 
copies of the certificates that I have attended on this subject (I 
believe 70 per cent of the such conferences I have attended). This 
tab is also under construction. 

fig. 29.13

fig. 29.14
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fig. 29.15

fig. 29.16

This main tab connects us to the another main tab “Inspiring 
Historians”. 

In this main tab, a few historians’ picture slides are given with 
theme “Endaro Mahaanu Bhaavulu” (Many great souls). Only a 
small fraction is done here. This tab is under construction. Names 
of the various institutions which are working on the history of 
Indian maths will be provided in the future. 
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This tab takes us to “Honours Program” tab. 
A department or a course in colleges and universities on this 

subject is highly required. A course either short or long is rare to 
find in India on the history of Indian mathematics. Efforts and 
contributions of P. Sarada Devi towards this cause have taken shape 
in the “Honours Program” at St. Xavier’s College, Mumbai. The 
honours program was conducted thrice in St. Xavier’s College, 
Mumbai, i.e. in 2004, 2007 and 2008. 

The introduction, projects list, gallery and testimonials are 
given as sub-tabs. 

fig. 29.17

 fig. 29.18



444  | History and Development of Mathematics in India

Another interesting main tab is “Tourism” in mathematics. The 
places are Nīla River Banks, Ghāṭs and Saṅgama Grāma (due to 
Calculus), Caturbhuja Temple (due to zero), Jantar Mantar in Jaipur 
and Ujjain (due to Sun dial and yantras), Pāṭana Devī in Chālīsgāon, 
Maharashtra (due to Bhāskarācārya), Chānd Bāoṛī of Rajasthan 
(due to symmetry), Inscription with Brāhmī numerals in Nānā 
Ghāṭ, Maharashtra, and Dholāvīrā, Indus Valley site in Gujarat 
(due to numerate culture) and Home of Śrīnivāsa Rāmānujan and 
Museum in Tamil Nadu. This list will also increase in the future. 

fig. 29.19

fig. 29.20

Another fascinating main tab is “Great Grandpa Riddles” or 
brain boosters. 

In this tab we have provided a few multiple choice questions 
on History of Indian Maths (HIM) and a few math questions from 
ancient texts like the Līlāvatī, Bhakśāli manuscript and Gaṇitasāra-
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saṁgraha. We call them as “Great Grandpa Challenges”. Students 
will enjoy solving them. 

Example 1 
At a distance of 200 cubits from a hill which is 1 cubits high is 
situated near a pond. Two hermits are at the top of the hill. One 
of them climbs down the hill and goes to the pond, while the 
other with his Yogic powers jumps up some distance into the air 
above the hill, and comes straight to the pond. Oh learned man! 
if you are well versed in mathematics, tell me how high did the 
second hermit jump into the sky, if the distance travelled by the 
both hermits are equal. 
Example 2: 

fig. 29.21

fig. 29.22

fig. 29.23



446  | History and Development of Mathematics in India

Finally, there is a main tab for the “Founder” of the website. 
Another tab for the “Contact” details on the website. 
Email: saradapattisapu@gmail.com 
Phone : +91-9985851712 

Conclusion 
There is a lot of scope to expand this site. For example, I could 
have included a tab on “Curriculum”. An online discussion is 
also a good idea. Also, I wish there will be many more websites 
by all the researchers/historians/educators on this subject. That 
will pave the way for the growth of this subject. 

Acknowledgements
My gratitude to Ms. Aditya Vadlapudi for designing this website 
and for her valuable suggestions and to Ms. Harshitha Senapathi 
for suggestions and proofreading. 

References 
Bose, D.M., S.D. Sen and B.V. Subbarayappa, 1971, A Concise History of 

Science in India, New Delhi: Indian National Science Academy.

Chattopadhyaya, D.P., 1986, History of Science and Technology in Ancient 
India, Calcutta: Firma KLM.

Datta, B. and A.N. Singh, 1962, History of Hindu Mathematics, 2 vols, 
Bombay: Asia Publishing House.

Dunham, William, 1997, The Mathematical Universe: An Alphabetical Journey 
through the Great Proots, Problems and Personalities, New York: Wiley 
& Sons. 

Jaggi, O.P., 1929, Concise Hisotory of Science in India, Delhi: Atma Ram.

Joseph, George Gheverghese, 1995, The Crest of the Peacock: Non European 
Roots of Mathematics, New Jersey: Princeton University Press.

Patwardhan, Krishnaji Shankara, Somashekhara Amrita Naimpally, 
Shyam Lal Singh, 2001, Lilavati of Bhaskaracharya: A Treatise of 
Mathematics of Vedic Tradition, Delhi: Motilal Banarasidass.  

Saraswati, T.A., 1979, Geometry in Ancient and Medieval India, Delhi: 
Motilal Banarsidass.



|  447Indian Math Story

Satya Prakash, 1965, Founders of Sciences in Ancient India, New Delhi: The 
Research Institute of Ancient Scientific Studies.

Srinivasa Iyengar, C.N., 1967, The History of Indian Mathematics, Calcutta: 
World Press.

Subbarayappa, B.V. and N. Mukunda (eds), 1995, Science in the West 
and India: Some Historical Aspects, New Delhi: Hindustan Publishing 
House. 

Cultural Heritage Series, vol. 6, Bharatiya Vidya Bhavan.

Ganita Bharati, a magazine, ISHM.





30

Technology of 
Veda Mantra Transmission through Ages 
Relevancy of Current Communication Technology 

(Verbal and Text)

M. Rajendran

The oral tradition of Vedic chanting has been declared an intangible 
heritage of humanity by UNESCO. In a meeting of jury members 
on 7 November 2003 in Paris, Koichiro Matsuura, Director 
General of UNESCO, declared the chanting of Vedas in India 
as an outstanding example of heritage and the form of cultural 
expressions. The proclamation says in the age of globalization and 
modernization that when the cultural diversity is under pressure, 
the preservation of oral tradition of Vedic chanting, a unique 
cultural heritage, has great significance.

Divisions of the Four Vedas
The Veda is considered to be infinite (ananto vai vedāḥ). In the 
beginning of creation there was only one veda and the number of 
revealed texts was far greater than we could imagine, during the 
course of time due to the diminishing intelligence of mankind as 
well as its declining strength, health and loss of faith, many texts 
were lost and the veda that is known today is a mere fraction of 
the original veda.

Towards the close of the Dvāpara-Yuga, it is believed, the Lord 
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manifested as Sage Veda Vyāsa, who in order to save the veda 
from extinction, re-edited it, dividing it into four units. Each unit 
was assigned to different classes of brāhmaṇas so that it would 
be easier to preserve them. These four units are known as the R̥k, 
Yajur, Sāma and Atharva.

Veda Vyāsa had four disciples and to each of them he taught 
one veda. Paila mastered the R̥gveda, Jaimini the Sāmaveda, 
Vaiśampāyana the Yajurveda and the Atharvaveda was learnt 
by Sumantu. Romaharṣana was entrusted with the duty of 
transmitting the Purāṇas and Itihāsas.

The Vedas transmitted by these sages to their disciples and 
in turn by the latter to theirs resulted in the Vedas becoming 
diversified into many branches or schools through the disciplic 
succession.

Vedic Chant
The Vedic chant is the oldest form of psalmody known. Very strict 
and complex methods of instruction have made it possible to 
preserve the ritual chant unchanged, despite thousands of years 
of wars, conquests and social upheavals. The R̥gveda is chanted on 
three notes, the Yajurveda on up to five notes and the Sāmaveda on 
seven notes. The Sāma is the only chant that is considered really 
musical per se and as such is considered to be inferior to the other 
two Vedas. Because of its “worldly” character it is often forbidden 
in certain rituals. It is also prescribed that if the Sāmaveda is heard 
while the other two are being recited then the recitation should 
stop immediately and only continue after the Sāma has terminated. 
According to the Taittirīya Upaniṣad – Śīkṣā-vaḷḷī – there are six 
main factors that need to be taken into consideration.
	 i.	 Varṇaḥ – pronunciation
	 ii.	 Svaraḥ – notes
	 iii.	 Mātrā – duration
	 iv.	 Balaṁ – emphasis
	 v. 	Sāma – Uniformity
	 vi.	 Santānaḥ – Continuity 
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The Vedic Accent
The rules of correct pronunciation and articulation of sounds are 
given in the Vedāṅga, known as śīkṣā.

'kh{kk O;k[;kL;ke%A o.kZLoj%A ek=kk cyaA lke lUrku%A bR;qÙkQ 
'kh{kk|k;%AA

Śīkṣā deals with varṇa (letters); svaraḥ (pitch) [there are essentially 
three svaras, viz. anudātta (gravely accented or low-pitched), 
udātta (high-pitched or acutely accented), svarita (circumflexly 
accented)]; mātrā (duration – a prosodial unit of time); balaṁ 
(strength or force of articulation); sāma (uniformity); and santānaḥ 
(continuity) during recitation.

Variant Forms of Vedic Chant
Vedic recitation has assumed two distinct forms that evolved to 
preserve its immutable character:  prakr̥ti and vikr̥ti with sub-forms.

The pāda-pāṭhaḥ forms the basis of a number of special 
recitations known as vikr̥ti (crooked) recitations. The text is recited 
backward or forward or the successive words are chanted in 
specific combinations. These were originally designed to prevent 
the student from forgetting even one letter of the text, however, 
through the ages, these mnemonic techniques became an end in 
themselves.

PRAKR̥TI

Saṁhitā-pāṭhaḥ 

vks"k©/;% la o©nUrs lkses©u lg jkK©k©©A

Pāda-pāṭhaḥ

vks"k©/;%A laA onUrsA lkses©uA lgA jkK©k©©AA

Krama-pāṭhaḥ 

vks"k©/;%A laA la o©nUrsA onUrs lkseasuA lkseasu lgA lg jkK©k©©A jkKsfr jkK©k©©AA

Mathematical Sequence Series of Krama-pāṭhaḥ
Sentence (S) = P1, P2, P3,..., P(n − 2), P(n − 1), Pn
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Krama Turn T, number (T1 to n − 1)
Turn 1 (T1) = P1, P2;
Turn 2 (T2) = P2, P3;
Turn (n − 2) = P(n − 2), P(n − 1)
Turn (n − 1) = P(n − 1), P(n)

General combination for krama-pāṭhaḥ is
Turn (n − 1) T(n − 1) = P(n − 1), P(n);

where, n > 1 and maximum number of turns < n (without any 
veṣṭana)

Pn = nth pāda in the sentence
Tn = Turn of krama-pāṭhaḥ
n = Number of pāda in a sentence

In the prakr̥ti form, the words do not change their sequence.

VIKR̥TI

The vikr̥tis are given in the following verse:

tVk ekyk f'k[kk js[kk èotks n.Mks jFkks?ku%A bR;"Vk foÑr;% çksDrk% 
ØeiwokZ egf"kZfHk%

1. jaṭā; 1 2 2 1 1 2 / 2 3 3 2 2 3 / 3 4 4 3 3 4 / 4 5 5 4 4 5 / ...

vks"k©/;% la la vks"k©/;% vks"k©/;% le~A la o©nUrs onUrs la la o©nUrsA 
o©nUrs lkses©u lkses©u onUrs onUrs lkses©uA lkses©u lg lg lkses©u lkses©u 
lgA lg jkKk jkK©k©© lg lg jkK©k©©A jkKsfr jkK©k©©AA

Mathematical Sequence Series of Jaṭā-pāṭhaḥ
Sentence (S) = P1, P2,..., P(n − 2), P(n − 1), P(n)
Jaṭā Turn (T), Number (T1 to n − 1)
Turn 1 (T1) = P1, P2, P2, P1, P1, P2
Turn 2 (T2) = P2, P3, P3, P2, P2, P3
Turn (n − 2)T(n − 2) = P(n − 2), P(n − 1), P(n − 1), P(n − 2),   

       P(n − 2), P(n − 1)
Turn (n − 1)(T(n − 1)) = P(n − 1), P(n), P(n), P(n − 1), P(n − 1), P(n)
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General combination of jaṭā-paṭhaḥ is
Turn (n − 1)(T(n − 1)) = P(n − 1), P(n), P(n), P(n − 1), P(n − 1), P(n)
where, n > 1 and maximum number of turns < n (without 

any veṣṭana)
Pn = nth pāda in the sentence
Tn = Turn of jaṭā-pāṭhaḥ
n = Number of pāda in a sentence

2. mālā; 1 2 / 2 1 / 1 2 / 2 3 / 3 2 / 2 3 / 3 4 / 4 3 / 3 4 / ...
3. śikhā; 1 2 2 1 1 2 3 / 2 3 3 2 2 3 4 / 3 4 4 3 3 4 5 / 4 5 5 4 4 5 6/ ...
4. rekhā; 1 2 / 2 1 / 1 2 / 2 3 4 / 4 3 2 / 2 3 / 3 4 5 6 / 6 5 3 4 / 3 4 

/4 5 6 7 8 / 8 7 6 5 4 / 4 5 / 5 6 7 8 9 10 / 10 9 8 7 6 5 / 5 6 / ...
5. dhvaja; 1 2 / 99 100 / 2 3 / 98 99 / 3 4 / 97 98 / 4 5 / 97 98 / 5 6 

/ 96 97 / ... 97 98 / 3 4 / 98 99 / 2 3 / 99 100 / 1 2 .
6. daṇḍa; 1 2 / 2 1 / 1 2 / 2 3 /3 2 1 / 1 2 / 2 3 / 3 4 / 4 3 2 1 / 1 2 

/ 2 3 / 3 4 / 4 5 / 5 4 3 2 1 ...
7. ratha; 1 2 / 5 6 / 2 1 / 6 5 / 1 2 / 5 6 / 2 3 / 6 7 / 3 2 1 / 7 6 5 / 

1 2 / 5 6 / 2 3 / 6 7 / 3 4 / 7 8 / 4 3 2 1 / 8 7 6 5 / ...
8. ghana; 1 2 2 1 1 2 3 3 2 1 1 2 3 / 2 3 3 2 2 3 4 4 3 2 2 3 4 / 3 4 4 3 

3 4 5 5 4 3 3 4 5 / ...

vks"k©/;% la la vks"k©/;% vks"k©/;% la o©nUrs onUrs la vks"k©/;% vks"k©/;% 
la onUrsA la o©nUrs onUrs la la o©nUrs lkses©u lkses©uA onUrs la la onUrs 
lkses©uA onUrs lkses©u lkses©u onUrs onUrs lkses©u lg lg lkses©u onUrs 
onUrs lkses©u lgA lkses©u lg lg lkses©u lkses©u lg jkK©k©© lg jkKk jkK©k©© 
lg lg jkK©k©©A jkKsfr jkK©k©©AA

Mathematical Sequence Series of Ghana-pāṭhaḥ
Sentence (S) = P1, P2, ... , P(n − 2), P(n − 1), P(n)
ghana Turn (T), Number (T1 to n − 1)
Turn1 (T1) = P1, P2, P2, P1, P1, P2, P3, P3, P2, P1, P1, P2, P3
Turn 2 (T2) = P2, P3, P3, P2, P2, P3, P4, P4, P3, P2, P2, P3, P4
Turn (n − 2)T(n − 2) = P(n − 2), P(n − 1), P(n − 1), P(n − 2),  
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          P(n − 2), P(n − 1), Pn, Pn, P(n − 1), P(n − 2), P(  − 2), P(n − 1), Pn
Turn (n − 1)(T(n − 1)) = P(n − 1), P(n), P(n), P(n − 1), P(n − 1), P(n)

General combination of ghana-pāṭhaḥ is
Turn (n − 1)(T(n − 1)) = P(n − 2), P(n − 1), P(n − 1), P(n − 2), P(n − 2),  

       P(n − 1), P(n), P(n), P(n − 1), P(n − 2), P(n − 2), P(n − 1), P(n),
where, n > 1 and maximum number of turns < n (without any 
veṣṭana)

Pn = nth pāda in the sentence
Tn = Turn of ghana-pāṭhaḥ
n = Number of pāda in a sentence.

CHANDAS (METRE)

The metres are regulated by the number of syllables (akṣaras) in 
the stanza (r̥k), which consists generally of three or four pādas, 
measures, divisions, or quarter verses, with a distinctly marked 
interval at the end of the second pāda, and so forming two semi-
stanzas of varying length.

The most common metres consisting of 8, 9, 10, 11, 12 syllables 
(akṣaras) in each pāda, are known as Anuṣṭubh, Br̥hatī, Paṅkti, 
Triṣṭup and Jagatī.

The Anuṣṭubh is the prevailing form of metre in the Dharma-
śāstras, the Rāmāyaṇa, the Mahābhārata and all the Purāṇas.

The pādas of a stanza are generally of equal length and of more 
or less corresponding prosodial quantities. But, sometimes two or 
more kinds of metre are employed in one stanza; then the pādas 
vary in quantity and length.

Maharṣi Piṅgala Chandasūtram
“Maharṣi Piṅgala Chandasūtram and Computer Binary 
Algorithms” is an unusual topic which links the past and the 
present. Computers represent the modern era, the Vedas are of 
a hoary past. Much has been researched and documented about 
computers, the Vedas are still to be solved of their mysteries. 
Many Vedic hymns have astounded the modern scientists and 
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astronomers, but there has been no serious effort to unravel the 
real meanings behind all the Vedic hymns. Here, we present the 
relevant binary system sūtras with the explanation and working of 
the algorithms written in coded sūtras. This opens up new areas 
for research and implementation of Piṅgala’s left to right binary 
or the Big-endian system.

Of the various gifts the Hindus gave to the world, the knowledge 
of gaṇita (mathematics) is supreme. They gave the concept of śūnya 
(zero), the decimal system (base 10) and sexadecimal (base 60) 
system. The binary system, which forms the basis of computation 
and calculation in computers, seems to be the superlative discovery 
of modern mathematics. It is astonishing to find the binary system 
in the Vedāṅga of chandas given so clearly by Maharṣi Piṅgala. As 
with any ancient Vedic knowledge, the binary system has been 
hidden in the Chandasūtram. The Hindus’ unique method is of 
using Sanskrit akṣaras (alphabets) for writing numbers left to right, 
with the place value increasing to the right. These are read in the 
reverse order from right to left – aṅkanam vāmato gatiḥ. The binary 
numbers are also written in the same manner as decimal numbers 
and read from right to left. We present the relevant sūtras from 
Maharṣi Piṅgala’s Chandasūtram. The algorithms are written as 
sūtras. The algorithms are recursive in nature, a very high concept 
in modern computer programming language. We fix the date of 
this Vedāṅga based on the date of the Vedas.

Very large numbers have been encoded using the algebraic 
code of Maharṣi Piṅgala’s Chandasūtram. The conformity between 
decimal and binary number is given in the Adhvayoga. This has to 
be properly understood, these akṣara binary numbers are not used 
for enumeration and classification of chandas only. Chanda means 
covering, hiding or concealing according to Vedic etymology. 
According to Pāṇini, it means Vedas and Vedic language. Prastara 
gives the algorithm for changing an ordinal number to guru–laghu 
binary syllabic encoding. Similar is the scheme of kaṭapayādi 
changing numbers to meaningful mnemonics. (We have developed 
software programs of the algorithms given in Maharṣi Piṅgala’s 
Chandasūtram). The algorithms should have been formulated 
before the specific Veda mantras. And the Vedāṅga-Jyotiṣa gives 
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the algorithms for astronomical calculations. To memorize the 
large volume of astronomical data and calculation tables Maharṣi 
Piṅgala’s binary system was used. This astronomical calculations 
were necessary for making rituals at appropriate time as given in 
the Kalpasūtras. Maharṣi Piṅgala defined two series of numbers, 
index or serial number and a quantitative series. The quantitative 
series lists the meteric variations, and index number gives decimal 
values of the variations as per adhvayoga algorithm. The main 
purpose of the Chandasūtram is to give rules based on bīja-gaṇita 
(algebra) for encoding the gaṇas or akṣara combinations. 

Chandas are for the study of Vedic metre. This gives the  
importance of “Encoding of the Veda Mantras”. This is the pāda 
(foot) of the Vedas. This gives the cryptic astronomical, algebraical, 
geometrical and method of Vedic interpretation. This has been 
in use in Tamil grammar Tolkāppiyam. The science of metrics in 
Tamil is named as Yappilakanam. Almost all the technical terms of 
Chandasūtram have similar word-meaning in Tamil. 

Interpretation of Vedas, based on the encoding methods using 
Chandasūtram, gives a method of chanting supercomputer. The 
mantras are based on sound and not on written scripts. The duration 
of pronunciation, the rules for when a laghu (short vowel) is to be 
pronounced as guru (long vowel) gives the superiority of sound 
over script. And this forms the basis of committing to memory 
large numbers of astronomy using the coding schemes of chandas.

Vedas are in different chandas. One meaning of chandas is that 
it is knowledge which is to be guarded in secret and propagated 
with care. The Vedas are also described as chandas. The whole 
of Sāmaveda is consisted of chandas. There is a word in Tamil 
referring to Tamil language as chandahtamil. Of the six Vedāṅgas, 
Chandaśāstra forms a part essential to understand the Vedas. 

The following algorithms are for the binary system in Piṅgala’s 
Chandasūtram.

Chandasūtram by Maharṣi Piṅgala contains eighteen pariccheda 
(sub-chapters) in eight adhyāyas (main chapters). The 1st pariccheda 
of six ślokas are not sūtras. The rest of the Chandasūtram is composed 
of sūtras.  
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The fourth śloka is:
mā ya rā sa tā ja bhā na la ga sammitam bhramati vaṅgamayam 
							            jagatiyasya|
sajayati piṅgala nāgaḥ śiva prasādat viśuddha matiḥ||

And the sixth śloka is: 
tri vīramam das varṇam ṣaṇmātramuacha piṅgala sūtram |
chandovarga padarta pratyaya hetoścasastaradou ||

In this Maharṣi Piṅgala states that mā, ya, rā, sa, tā, ja, bhā, na, la, 
ga mentioned in the fourth śloka is in itself a sūtra, containing ten 
varṇas and specifies that the same is kept on the top of all sūtras 
because it is the basis for chando varga padārthas and pratyayas. 
Three technical terms are given here: vīramam, mātrā and pratyaya. 
The term pratyaya indicates vast and remarkable meaning. 
The astonishing wonderful intelligence of Maharṣi Piṅgala is 
imbibed in various pratyayas. In fact, the pratyayas is a collection 
of extraordinarily ingenious and clever solutions to problems.

The 8th adhyāya gives the following sixteen sūtras (8.20-8.35) 
which relate to the Piṅgala pratyaya system:
	 1.	 Prastāraḥ – Algorithms to produce all possible combinations 

of n binary digits.
	 2.	 Naṣṭam – Algorithms to recover the missing row.
	 3.	 Uddiṣṭam – Algorithms to get the row index of a given row.
	 4.	 Saṁkhyā – Algorithms to get the total number of n bit 

combinations.
	 5.	 Adhvayoga – Algorithms to compute the total combinations 

of chandas ranging from 1 syllable to n syllables.
	 6.	 Eka-dvi-adi-l-g-kriyā – Algorithms to compute a number of 

combinations using n – number of syllables taking r – the 
number of laghus (or gurus), at a time nCr.

Conclusion
Interpretation of Vedas based on the encoding methods using 
Chandasūtram gives a method of chanting supercomputer. The 
mantras are based on sound and not on written scripts. The 
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duration of pronunciation, the rules for when a laghu (short vowel) 
is to be pronounced as a guru (long vowel) gives the superiority 
of sound over script. And this forms the basis of committing to 
memory large numbers of astronomy using the coding schemes of 
chandas. Vedas are in different chandas (metres). One meaning of 
chandas is that it is knowledge which is to be guarded in secret and 
propagated with care. The Vedas are also described as chandas. 
The whole of Samaveda consists of chandas. There is word in Tamil 
referring Tamil language as Chandahtamil. Of the six Vedaṅgas 
Chandasāstra forms a part essential to understand the Vedas. 
These chandas have been studied in great details. Vikrutti’s or 
chanting method serves the purpose of retaining intact in veda 
mantras without any error throughout the ages. Pingala chandas 
give the rules for encoding knowledge inside the Veda mantras. 
These systems have to be researched and adapted for currently 
communication technology.
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A Note on Confusion Matrix 
and Its Real Life Application

T.N. Kavitha 

Abstract: A discussion of the origin of the confusion matrix and 
a variety of definition of various persons are given in a detailed 
manner. A confusion matrix contains information about actual 
and predicted classifications done by a classification system. 
Performance of such systems is commonly evaluated using 
the data in the matrix. The proportion of a data set for which 
a classifier makes a prediction. If a classifier does not classify 
all the instances, it may be important to know its performance 
on the set of cases for which it is “confident” enough to make a 
prediction, that matter is discussed herein in a detailed manner. 

Keywords: Confusion matrix, classifier, prediction, contingency 
table.

Introduction
A confusion matrix, also known as an error matrix, is a specific 
table layout that allows visualization of the performance of an 
algorithm, typically a supervised learning one (in unsupervised 
learning, it is usually called a matching matrix). Each row of the 
matrix represents the instances in a predicted class while each 
column represents the instances in an actual class (or vice versa) 
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(Pearson 1904). The name stems from the fact that it makes it 
easy to see if the system is confusing two classes (i.e. commonly 
mislabelled one as another). It is a special kind of contingency 
table, with two dimensions (“actual” and “predicted”), and 
identical sets of “classes” in both dimensions (each combination 
of dimension and class is a variable in the contingency table). 

Meaning of Confusion Matrix
In Oxford Dictionary of Psychology, we have the following definition 
for confusion matrix:

A matrix representing the relative frequencies with which 
each of a number of stimuli is mistaken for each of the others 
by a person in a task requiring recognition or identification of 
stimuli. Analysis of these data allows a researcher to extract 
factors (2) indicating the underlying dimensions of similarity 
in the perception of the respondent. For example, in colour-
identification tasks, relatively frequent confusion of reds with 
greens would tend to suggest daltonism. 	         – Matthew

The confusion matrix was invented in 1904 by Karl Pearson. He 
used the term Contingency Table. It appeared at Karl Pearson’s 
Mathematical Contributions to the Theory of Evolution. During 
the Second War World, detection theory was developed as an 
investigation of the relations between stimulus and response. We 
have used confusion matrix there. Due to the detection theory, 
the term was used in psychology. From there the term reached 
machine learning. In statistics, it seems that though the concept 
was invented, a field very related to the machine learning, it 
reached machine learning after a detour in during 100 years. 

J.T. Townsend introduced the concept of confusion matrix 
in his paper “Theoretical Analysis of an Alphabetic Confusion 
Matrix” (1971). In this work, a study was undertaken to obtain a 
confusion matrix of the complete upper-case English alphabet with 
a simple non-serifed font under tachistoscopic conditions. This was 
accomplished with two experimental conditions, one with blank 
post-stimulus field and one with the noisy post-stimulus field, 
for six (sensory states) Ss run 650 trials each. Three mathematical 
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models of recognition, two based on the concept of a finite number 
of sensory states and one being the choice model were compared in 
their ability to predict the confusion matrix after their parameters 
were estimated from functions of the data. 

The paper discusses an experiment in which the 26 English 
alphabet letters (stimuli) are presented to a subject that should 
present a reply with the same letter (reaction). The confusion is a 26 
× 26 matrix with the probability of each reaction to each stimulus. 
This explains the name (the matrix of the subject confusion) and 
matches the use in machine learning today. 

Ron Kohavi and Foster Provost discussed about confusion 
matrix in the topic “Glossary of Terms” (1998).

They defined a matrix called confusion matrix showing the 
predicted and actual classifications. A confusion matrix is of size L 
x L, where L is the number of different label values. The following 
confusion matrix is for L = 2: 

Actual\Predicted	 Negative	 Positive
Negative	  A	  B
Positive	  C 	  D 

The following terms are defined for a two × two confusion 
matrix:
Accuracy: (a + d)/(a + b + c + d).
True positive rate (recall, sensitivity): d/(c + d).
True negative rate (specificity): a/(a + b).
Precision: d/(b + d).
False positive rate: b/(a + b).
False negative rate: c/(c + d).

Coverage 
The proportion of a data set for which a classifier makes a 
prediction. If a classifier does not classify all the instances, it may 
be important to know its performance on the set of cases for which 
it is “confident” enough to make a prediction.
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The very first Howard Hamilton described this concept in his 
2002 article named “Confusion Matrix”. 

A confusion matrix (Kohavi and Provost 1998) contains 
information about actual and predicted classifications done by a 
classification system. Performance of such systems is commonly 
evaluated using the data in the matrix. The following table shows 
the confusion matrix for a two class classifier. 

			                Predicted
			     Negative		     Positive
	

Actual
 	 Negative 	        a 		          B

		  Positive 	        c		          D 

The entries in the confusion matrix have the following meaning 
in the context of our study: 
	 •	 a is the number of “correct” predictions that an instance is 

negative, 
	 •	 b is the number of “incorrect” predictions that an instance 

is “positive”, 
	 • 	c is the number of “incorrect” of predictions that an instance 

“negative”, and 
	 • 	d is the number of “correct” predictions that an instance is 

“positive”.
Several standard terms have been defined for the two class 

matrix: 
	 • 	The accuracy (AC) is the proportion of the total number of 

predictions that were correct. It is determined using the 
equation: 

					     AC a d
a b c d

�
�

� � �
. 		                (1)

	 •	 The recall or true positive (TP) rate is the proportion of positive 
cases that were correctly identified, as calculated using the 
equation: 

					     TP d
c d

�
�

. 			                 (2)

	 •	 The false positive (FP) rate is the proportion of negatives cases 
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that were incorrectly classified as positive, as calculated 
using the equation: 

					     FP b
a b

�
�

. 			               (3)

	 •	 The true negative (TN) rate is defined as the proportion of 
negatives cases that were classified correctly, as calculated 
using the equation: 

					     TN a
a b

�
�

. 			                (4)

	 • 	The false negative (FN) rate is the proportion of positives cases 
that were incorrectly classified as negative, as calculated 
using the equation: 

					     FN c
c d

�
�

. 			                (5)

	 • 	Finally, precision (P) is the proportion of the predicted 
positive cases that were correct, as calculated using the 
equation: 

					     P d
b d

�
�

. 			                (6)

The accuracy determined using equation (1) may not be an 
adequate performance measure when the number of negative 
cases is much greater than the number of positive cases (Kubat et 
al. 1998). Suppose there are 1,000 cases 995 of which are negative 
cases and 5 of which are positive cases. If the system classifies 
them all as negative, the accuracy would be 99.5 per cent, even 
though the classifier missed all positive cases. Other performance 
measures account for this by including TP in a product: for 
example, geometric mean (g-mean)(Kubat et al. 1998), as defined 
in equations (7) and (8) and F-measure (Lewis and Gale 1994), as 
defined in equation (9). 
					     g TP P-mean =1 × . 		               (7)
					     g TP TN-mean =2 × . 		               (8)

					     F P TP
P TP

�
�� �� �
� �

�
�

2

2

1 . 		               (9)

In equation (9), β has a value from 0 to infinity and is used to 
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control the weight assigned to TP and P. Any classifier evaluated 
using equations 7, 8 or 9 will have a measure value of 0, if all 
positive cases are classified incorrectly. 

Tom Fawcett published the topic “An Introduction to ROC 
Analysis” (2006). The matter discussed in this article is publication 
a review. Given a classifier and an instance, there are four possible 
outcomes. 
	 1. 	If the case is positive and it is classified as positive, it is 

counted as a true positive.
	 2. 	If it is classified as negative, it is calculated as a false negative. 
	 3. 	If the instance is negative and it is classified as negative, it 

is to add up as a true negative. 
	 4. 	If it is classified as positive, it is counted as a false positive. 

Given a classifier and a set of instances (the test set), a two × 
two “confusion matrix” (also called a “contingency table”) can be 
constructed representing the dispositions of the set of instances.
This matrix forms the basis for many common metrics. 

Gregory Griffin, Alex Holub and Pietro Perona presented 
their effort about the confusion matrix named “Caltech-256 Object 
Category Dataset” (2007).

Kai Ming Ting presented in the similar way like the existing 
one, that is the attempt of ‘Confusion Matrix’ (2011). 

In 2018, the following are very clear, i.e. in the field of machine 
learning and specifically the problem of statistical classification, 
a confusion matrix, also known as an error matrix, is a specific 
table layout that allows visualization of the performance of an 
algorithm, typically a supervised learning one. Each row of the 
matrix represents the instances in a predicted class while each 
column represents the instances in an actual class (or vice versa). 

It is a special kind of contingency table, with two dimensions 
(“actual” and “predicted”), and identical sets of “classes” in both 
dimensions. 
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Example 
A “confusion matrix” for a classification task with the three (c 
= 3) output classes: A, B and C. The test set used to evaluate the 
algorithm contained 100 cases with a distribution of 30 As, 35 Bs 
and 35 Cs. A perfect classifier would have only made predictions 
along the diagonal, but the results below show that the algorithm 
was only correct on (20 + 25 + 24)/100 = 69 per cent of the cases. 
The “matrix” can be used to infer that the classifier often confuses 
dairy for cans (11 incorrect) and cans for dairy (9 wrong). This 
“matrix” also includes summations of the rows and columns. 

ACTUAL/ 
PREDICTED

A B C sum

A 20   2 11 33 
B   2 25   1 28 
C   9   5 24 38 
Sum 31 32 36     100

Conclusion 
A “confusion matrix” is a table that often used to describe the 
performance of a classification model (or “classifier”) on a set of 
test data for which the true values are known. A confusion matrix 
is a contingency table that represents the count of a classifier’s class 
predictions with respect to the actual outcome on some labelled 
learning set. Predictions areas were the function encounters with 
all its difficulties. The application of the confusion matrix allows 
the visualization of the performance of an algorithm in Python 
software. 
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Historical Development of 
Fluid Dynamics

E. Geetha
M. Larani 

Abstract: In this paper we discuss about the history and 
development of fluid dynamics. Fluid dynamics is the subfield 
of fluid mechanics. Fluid mechanics is the combination of 
hydraulics and hydrodynamics. Hydraulics developed as an 
empirical science beginning from the pre-historical times. 
The advent of hydrodynamics, which tackles fluid movement 
theoretically, was in eighteenth century by various scientists. 
Complete theoretical equations for the flow of non-viscous fluid 
were derived by Euler and other scientists. In the nineteenth 
century, hydrodynamics  advanced sufficiently to derivate the 
equation for the motion of a viscous fluid by Navier and Stokes: 
only laminar flow between parallel plates was solved. In the 
present age, with the progress in computers and numerical 
techniques in hydrodynamics, it is now possible to obtain 
numerical solutions of Navier–Stokes equation.

Keywords: Pascal’s law, hydrostatics, hydrodynamics, Hagen–
Poiseuille equation, Vortex Dynamics.

Introduction
The history of fluid mechanics, the study of how fluids move and 
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the forces on them, dates back to the ancient Greeks. A pragmatic, 
if not scientific, knowledge of fluid flow was exhibited by ancient 
civilizations, such as in the design of arrows, spears, boats and 
particularly hydraulic engineering projects for flood protection, 
irrigation, drainage and water supply (Garbrecht 1987). The 
earliest human civilizations began near the shores of rivers, and 
consequently, coincided with the dawn of hydrology, hydraulics 
and hydraulic engineering.

Archimedes
The fundamental principles of hydrostatics and dynamics were 
given by Archimedes in his work on floating bodies (ancient 
Greek), around 250 bce. In it, Archimedes develops the laws of 
buoyancy, also known as Archimedes’ Principle. This principle 
states that a body immersed in a fluid experiences a buoyant 
force equal to the weight of the fluid it displaces (Caroll 2007). 
Archimedes mentioned that each particle of a fluid mass, when in 
equilibrium, is equally pressed in every direction; and he inquired 
into the conditions according to which a solid body floating in 
a fluid should assume and preserve a position of equilibrium 
(Greenhill 1912) .

The Alexandrian
In the Greek school at Alexandria, which flourished  under  the  
auspices of the Ptolemies, attempts were made at the construction 
of hydraulic machinery, and in about 120 bce the fountain of 
compression, the siphon and the forcing-pump were invented by 
Ctesibius and Hero. The siphon is a simple instrument; but the 
forcing-pump is a complicated invention, which could scarcely 
have been expected  in the infancy of hydraulics. It was probably 
suggested to Ctesibius by the Egyptian wheel or Noria, which 
was common at that time, and which was a kind of chain pump, 
consisting of a number of earthen pots carried round by a wheel.  
In some of these machines the pots have a value in the bottom 
which enables them to descend without much resistance, and 
diminishes greatly the load upon the wheel; and, if we suppose 
that this value was introduced so early as the time of Ctesibius, it 
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is not difficult to perceive how such a machine might have led to 
the invention of the forcing-pump (Greenhill 1911).

Sextus Julius Frontinus
Notwithstanding these inventions of the Alexandrian school, its 
attention does not seem to have been directed to the motion of 
fluids; and the first attempt to investigate this subject was made by 
Sextus Julius Frontinus, inspector of the public fountains at Rome 
in the reigns of Nerva and Trajan. In his work De aquaeductibus urbis 
Romae commentaries, he considers the methods which were at that 
time employed for ascertaining the quantity of water discharged 
from tubes and the mode of distributing the waters of a water 
supply or a fountain. He remarked that flow of water from an 
orifice depends not only on the magnitude of the orifice itself, but 
also on the height of the water in the reservoir; and that a pipe 
employed to carry off a portion of water from an aqueduct should, 
as circumstances required, have a position more or less inclined to 
the original direction of the current. But as he was continued with 
the law of the velocities of running water as depending upon the 
depth of the orifice, the want of precision which appears in his 
results is not surprising (Greenhill 1912).

Seventeenth and Eighteenth Centuries

CASTELLI AND TORRICELLI

Benedetto Castelli and Evangelista Torricelli, two of the disciples 
of Galileo, applied the discoveries of their master to the science 
of hydrodynamics. In 1628 Castelli published a small work, Della 
misura dell’ acque correnti, in which he suitably explained several 
phenomena in the motion of fluids in rivers and canals; but he 
committed a great paralogism in supposing the velocity of the 
water proportional to the depth of the orifice below the surface of 
the vessel. Torricelli, observing that in a jet where the water rushed 
through a small nozzle it rose to nearly the same height with the 
reservoir from which it was supplied, imagined that it ought to 
move with the same velocity as if it had fallen through that height 
by the force of gravity and, hence, he deduced the proposition that 
the velocities of liquids are as the square root of the head, apart 
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from the resistance of the air and the friction of the orifice. This 
theorem was published in 1643, at the end of his treatise De motu 
gravium projectorum and it was confirmed by the experiments of 
Raffaello Magiotti on the quantities of water discharged from 
different ajutages under different pressures (Greenhill 1912).

BLAISE PASCAL

In the hands of Blaise Pascal hydrostatics assumed the dignity of a 
science and in a treatise on the equilibrium of liquids, found among 
his manuscripts after his death and published in 1663, the laws of 
the equilibrium of liquids were demonstrated in the most simple 
manner, and amply confirmed by experiments (Greenhill 1912).

STUDIES BY ISAAC NEWTON

Friction and Viscosity 
The effects of friction and viscosity in diminishing the velocity of 
running water were noticed in the Principia of Isaac Newton, who 
threw much light upon several branches of hydromechanics. At a 
time when the Cartesian system of vortices universally prevailed, he 
found it necessary to investigate that hypothesis and in the course of 
his investigations he showed that the velocity of any stratum of the 
vortex is an arithmetical mean between the velocities of the strata 
which enclose it; and from this evidently follows that the velocity 
of a filament of water moving in a pipe is an arithmetical mean 
between the velocities of the filaments which surround it. Taking 
advantage of these results, Italian-born French engineer Henri Pitot 
afterwards showed that the retardations arising from friction are 
inversely as the diameters of the pipes in which the fluid moves 
(Greenhill 1912).

Orifices
The attention of Newton was also directed to the discharge of 
water from orifices in the bottom of vessels.

Waves
Newton was also the first to investigate the difficult subject of the 
motion of waves.
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DANIEL BERNOULLI

Daniel Bernoulli’s work on hydrodynamics demonstrated that the 
pressure in a fluid decreases as the velocity of fluid flow increases. 
He also formulated Bernoulli’s law and made the first statement of 
the kinetic theory of gases. In fluid dynamics, Bernoulli’s principle 
states that an increase in the speed of a fluid occurs simultaneously 
with a decrease in pressure or a decrease in the fluid’s potential 
energy. The principle is named after Daniel Bernoulli who 
published it in his book Hydrodynamica in 1738 (Greenhill 1912).

JEAN LE ROND D’ALEMBERT

In fluid dynamics, d’Alembert’s paradox (or the hydrodynamic 
paradox) is a contradiction reached in 1752 by French mathematician 
Jean le Rond d’Alembert. He proved that for incompressible and 
inviscid potential flow – the drug force is zero on a body moving 
with constant velocity relative to the fluid.

LEONHARD EULER

The resolution of the questions concerning the motion of fluids 
was effected by means of Leonhard Euler’s partial differential 
coefficients. This calculus was first applied to the motion of water 
by d’Alembert and enabled both him and Euler to represent the 
theory of fluids in formulae restricted by no particular hypothesis 
(Greenhill 1912).

GOTTHILF HAGEN

Hagen–Poiseuille equation: In 1839, Hagen undertook careful 
experiment in brass tubes that enabled him to discover the 
relationship between the pressure drop and the tube diameter 
under conditions of laminar flow of homogeneous viscous liquids.

Nineteenth Century

HERMANN VON HELMHOLTZ

In 1858, Hermann Von Helmholtz published his seminal paper 
“Uber Integrale der Hydrodynamischen Gleichungen, Welche 
den Wirbelbewegungen entsprechen”, in Journal fur die reine und 
angewandte mathematk. So important was the paper that a few years 
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later P.G. Tait published an English translation, “On Integrals of 
the Hydrodynamical Equations which Express Vortex Motion”, in 
Philosophical Magazine (1867). In his paper Helmholtz established 
his three “laws of vortex motion” in much the same way one finds 
them in any advanced textbook of fluid mechanics today. This 
work established the significance of vorticity to fluid mechanics 
and science in general. For the next century or so, vortex dynamics 
matured as a subfield of fluid mechanics, always commanding 
at least a major chapter in treatises on the subject. Thus, H. Lamb’s 
well-known Hydrodynamics (1932) devotes full chapter to vorticity 
and vortex dynamics as does G.K. Batchelor’s An Introduction to 
Fluid Dynamics (1967). In due course entire treatises were developed 
to vortex motion. H. Poincare’s Theorie des Tourbillons (1893), H. 
Villat’s Lecons sur la Theorie des Tourbillons (1930), C. Truesdell’s The 
Kinematics of Vorticity (1954), and P.G. Staffman’s Vortex Dynamics 
(1992) may be mentioned. Earlier individual sessions at scientific 
conferences were devoted to vortices, vortex motion, vortex dynamics 
and vortex flows. Later, entire meetings were devoted to the subject.

The range of applicability of Helmholtz’s work grew to 
encompass atmospheric and oceanographic flows, to all branches 
of engineering and applied science and, ultimately, to superfluids 
(today including Bose–Einstein condensates). In modern fluid 
mechanics, the role of vortex dynamics in explaining flow 
phenomena is firmly established. Well-known vortices have 
acquired names and are regularly depicted in the popular media: 
hurricanes, tornadoes, waterspouts, aircraft trailing vortices (e.g. 
Wingtip vortices), drainhole vortices (including the bathtub 
vortex), smoke rings, underwater bubble air rings, cavitation 
vortices behind ship propellers and so on. In the technical 
literature, a number of vortices that arise under special conditions 
also have names: the Karman Vortex Street wake behind a bluff 
body, Taylor Vortices between rotating cylinders, Gortler Vortices 
in flow along a curved wall, etc.

JEAN NICOLAS PIERRE HACHETTE

J.N.P. Hachette in 1816-17 published memoirs containing the 
results of experiments on the spouting of fluids and the discharge 
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of vessels. His object was to measure the contracted part of a 
fluid vein, to examine the phenomena attendant on additional 
tubes, and to investigate the form of the fluid vein and the results 
obtained when different forms of orifices are employed.

Twentieth Century

DEVELOPMENTS IN VORTEX DYNAMICS

Vortex dynamics is a vibrant subfield of fluid dynamics, 
commanding attention at major scientific conferences and 
precipitating workshops and symposia that focus fully on the 
subject.

Vortex atom theory is the new dimension in the history of 
vortex dynamics, which was done by William Thomson; later 
it was developed by Lord Kelvin. His basic idea was that atoms 
were to be represented as vortex motions in the ether. This theory 
predated the quantum theory by several decades and because 
of the scientific standing, its originator received considerable 
attention. Many profound insights into vortex dynamics were 
generated during the pursuit of this theory. Other interesting 
corollaries were the first counting of simple knots by P.G. Tait, 
today considered a pioneering effort in graph theory, topology, 
and knot theory. Ultimately, Kelvin’s vortex atom was seen to be 
wrong-headed but the many results in vortex dynamics that it 
precipitated have stood the test of time. Kelvin himself originated 
the notion of circulation and proved that in an inviscid fluid 
circulation around a material, contour would be conserved. This 
result singled out by Einstein in “Zum hundertjahrigen Gedenktag 
von Lord Kelvins Geburt, Naturwissensschaften”(1924) (title 
translation: “On the 100th Anniversary of Lord Kelvin’s Birth”), as 
one of the most significant results of Kelvin’s work provided an 
early link between fluid dynamics and topology.

The history of vortex dynamics seems particularly rich in 
discoveries and rediscoveries of important results, because 
results obtained were entirely forgotten after their discovery and 
then were rediscovered decades later. Thus, the integrability of 
the problem of three-point vortices on the plane was solved in 
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the 1877 thesis of a young Swiss applied mathematician named 
Walter Grobli. In spite of having been written in Gottingen in the 
general circle of scientists surrounding Helmholtz and Kirchhoff, 
and in spite of having been mentioned in Kirchhoff’s well-known 
lectures on theoretical physics and in other major texts such as 
Lamb’s Hydrodynamics, this solution was largely forgotten. In an 
article appeared in the year 1949, it was noted that mathematician 
J.L. Synge created a brief revival, but Synge’s paper was in turn 
forgotten. A quarter century later a 1975 paper by E.A. Novikov 
and a 1979 paper by H. Aref on chaotic advection finally brought 
this important earlier work to light. The subsequent elucidation 
of chaos in the four-vortex problem, and in the advection of a 
passive particle by three vortices, made Grobli’s work part of 
“modern science”.

Another example of this kind is the so-called “Localized 
Induction Approximation” (LIA) for three-dimensional vortex 
filament motion, which gained favour in the mid-1960s through 
the works of R.J. Arms, Francis R. Hama, Robert Betchov and 
others, but turns out to date from the early years of the twentieth 
century in the work of Da Rios, a gifted student of the noted 
Italian mathematician T. Levi-Civita. Da Rios published his results 
in several forms but they were never assimilated into the fluid 
mechanics literature of his time. In 1972 H. Hasimoto used Da 
Rios’ “Intrinsic Equations” (later rediscovered independently by 
R. Betchov) to show how the motion of a vortex filament under 
LIA could be related to the non-linear Schrodinger equation. This 
immediately made the problem part of “modern science” since it 
was then realized that vortex filaments can support solitary twist 
waves of large amplitude.
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Role of Wiener Index
in Chemical Graph Theory

A. Dhanalakshmi
K. Srinivasa Rao

Abstract: We have reviewed the introduction of the Hosoya 
polynomial and Wiener index. We also reviewed its development 
and applications in various journals. Here we discuss about the 
history of the Wiener index, related indices and some of the 
methodologies used in it so far.

Keywords: Wiener index, Hosoya polynomial, chemical graph 
theory.

Introduction 
In earlier days, Wiener index played a vital role in chemical 
graph theory. Application of topological indices in biology and 
chemistry began in 1947. The Chemist Harold Wiener (1947)
introduced the Wiener index to demonstrate correlations between 
physicochemical properties of organic compounds and the index 
of their molecular graphs. 

Molecular descriptors are numerical values obtained by 
the quantification of various structural and physicochemical 
characteristics of the molecule. It is envisaged that molecular 
descriptors quantify these attributes so as to determine the 
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behaviour of the molecule and the way the molecule interacts with 
a physiological system. Since the exact mechanism of drug activity 
is unknown in many cases, it is desirable to start with descriptors 
spanning as many attributes of the molecules as possible and then 
assess their ability to predict the desired activity/property.	

Topological indices of a simple graph are numerical descriptors 
that are derived from the graph of chemical compounds. Such 
indices based on the distances in graph are widely used for 
establishing relationships between the structure of molecular 
graphs and nanotubes and their physicochemical properties. 

Wiener (1947) originally defined his index on trees and studied 
its use for correlations of physicochemical properties of alkanes, 
alcohols, amines and their analogous compounds as:

			   WI d u v
v V Gu V G

�
��
��1

2
( , ),

( )( )

where d(u, v) denotes the distance between vertices u and v.
The Hosoya polynomial of a graph is a generating function 

about distance distributing, introduced by Hosoya in 1988 and for 
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In a series of papers, the Wiener index and the Hosoya polynomial 
of some molecular graphs and nanotubes are computed. For more 
details about the Wiener. 

Ivan Gutman et al., introduced the system of molecular 
descriptor and its applications in QSPR/QSAR (Quantitative 
structure property/activity relationships). Ivan Gutman and 
Oskar E. Polansky (1986) suggested the conversion of the structure 
of a molecule into a graph and introduced the concept of graph 
energy, topological indices. Babujee and Sengabamalar (2012) 
explained how Wiener index correlates with properties of organic 
compounds and found Wiener index of some common cycles, 
paths, complete graph and star graph and so on. K. Tilakam et al. 
(2014) obtained the Wiener index of some graphs using Matlab.

Mohamed Essal et al. (2011) derived some theoretical results 
for the Wiener index, degree distance and the hyper Wiener index 
of a graph. Sandi Klavžar and Ivan Gutman (1996) compared the 
Schultz molecular index with the Wiener index. 

Sandi Klavžar (2008) presented the applications of chemical 
graph theory and used cut method to find the topological indices: 
Wiener index, Szeged index, hyper-Wiener index, the PI index, 
weighted Wiener index, Wiener-type indices, and classes of 
chemical graphs such as trees, benzenoid graphs and phenylenes.

Wiener (1947) instructed to compute in a simple way to find 
the path number. Multiply the number of carbon bonds on one 
side of any bond by those on the other side. W is the sum of these 
values for all bonds. Let T be a tree with N vertices and e one of its 
edges (bonds). Let also N1(e) and N2 (e) = N − Nj(e) be the numbers 
of vertices of the two parts of T − e. 
			   1 2( ) ( )= ∑

e
W N e N e

where the summation is over all N1 edges of T. 
Sonja Nikolić et al. (1995) reviewed the definitions and 

methods of computing the Wiener index. They  pointed out that 
the Wiener index is a useful topological index in the structure–
property relationship because it is a measure of the compactness 
of a molecule in terms of its structural characteristics, such as 
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branching and cyclicity. Also, they did a comparative study 
between the Wiener index and several of the commonly used 
topological indices in the structure–boiling point relationship. 
Developments such as an extension of the Wiener index into its 
three-dimensional version are also mentioned.

Conclusion
Reviewing the mathematical properties and the chemical 
applications of the Wiener index, it is one of the best understood 
and most frequently used molecular descriptors. It has numerous 
applications in the modelling of physicochemical, pharmacological 
and biological properties of organic molecules.
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The Origin of Semiring-valued Graph

Ramya
T.N. Kavitha

Abstract: We discuss the origin of S-valued graph and its 
application fields. The semiring-valued graph is defined as the 
combination of graph and algebraic structure. Various types 
of S-valued graphs are defined by many persons. From those 
discussions here we talk about a few of them, for example, vertex 
domination on S-valued graph, degree regularity on edges of 
S-valued graph, homomorphism on S-valued graph, and vertex 
domination number in S-valued graph; using these discussions 
we try to find a new type of S-valued graph in future.

Introduction
The origin of S-valued graph was in 1934. H.S. Vandiver introduced 
the semiring and studied “the algebraic structure of ideals in 
rings”. Further, Jonathan Golan introduced the notion of S-valued 
graphs, i.e. S-semiring. In the year 2015, M. Chandramouleeswaran 
introduced the semiring-valued graph in the International Journal 
of Pure and Applied Mathematics. In 2016, S. Jeyalakshmi introduced 
vertex domination on S-valued graph in the International Journal 
of Innovative Research in Science. It was followed by the authors S. 
Mangala Lavanya and S. Kiruthiga Deepa and they introduced 
“degree regularity on edges of S-valued graph” in the same year. 
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Further, M. Rajkumar (2016) introduced “the homomorphism 
on S-valued graph”. In 2016, S. Jeyalakshmi presented the paper 
“Strong and Weak Vertex Domination on S-valued Graph” in The 
International Journal of Pure and Applied Mathematics. The author 
motivated the notion of S-valued graphs. “K-colourable S-valued 
graph” was introduced by T.V.G. Shriprakash as he published in 
the International journal of Pure and Applied Mathematics (2017). In 
July 2017, the S-valued definition was introduced by S. Jeyalakshmi 
in the Mathematical Science International Research Journal. She 
introduced the definition the vertex v ∈ Gs is said to be a weight 
dominating vertex if σ(u) ≥ σ(v), for all u∈V. M. Sundar introduced 
the applied graph theory paper in the year 2017. He states that the 
products of graph have lead several areas of research in graph 
theory. Algebraic graph theory can be viewed as an extension of 
graph theory in which algebraic methods are applied to problems 
about graphs.

Origin of S-valued Graph
In 1934, H.S. Vandiver introduced the semiring in the study of 
algebraic structure of ideals in rings. Further, Jonathan Golan 
introduced the notion of “S-valued graphs”. That is also known 
as semiring-valued graphs. There are some major applications of 
it in such fields as social sciences, communications, networks and 
algorithms designs.

Semiring-valued Graph 
M. Chandramouleeswaran introduced the semiring-valued graph 
in the International Journal of Pure and Applied Mathematics in 2015. 
He mainly combined the algebraic structure with the graph that 
is known as semiring-valued graph. It has the other notation as 
S-valued graph. 

He defined a semiring (S, +, *) as an algebraic system with 
a non-empty set S together with two binary operations + and * 
such that 
	 1.	 (S, +, *) is a monoid. 
	 2.	 (S, *) is a semigroup.
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	 3.	 For all a, b, c ∈ S, a × (b + c) = a × b + a × c and (a + b) × c = a 
× c + b × c.

	 4.	 0 · x = x · 0 = 0 ∀ x ∈ S.
This can be applied to find certain social network problems.

Vertex Domination on S-valued Graph
S. Jeyalakshmi published an article “Vertex Domination on 
S-valued Graph” in the International Journal of Innovative Research 
in Science (September–October 2016).

She defined a set D ⊆ V as a dominating vertex set of G, if ∀ v 
∈ V − D, N(v) Ո D ≠ ϕ. A dominating set D is a minimal dominating 
vertex set if no proper subset of D is a vertex dominating set in G.

The study of domination is the fastest growing area in graph 
theory. For that she introduced the notion of vertex domination 
on S-valued graphs and proof of some simple properties.

Degree Regularity on Edges of S-valued Graph
In the Journal of Mathematics, S. Mangala Lavanya and S. Kiruthiga 
Deepa published an article entitled “Degree Regularity on 
Edges of S-valued Graph”.

They defined a domination set S as a minimal edge dominating 
set if no proper subset of S is an edge dominating set in G. A 
S-valued graph Gs s is said to be ds- edge regular if for any e ∈ E, 
degs (e) = (|Ns(e)|s, |Ns(e)|).

The authors studied the regularity conditions on the S-valued 
graph. Further, the moved about the study of the edge-degree 
regularity of the S-valued graph. Then they discussed about the 
edge-degree regularity of S-valued graphs in thier paper.

Homomorphism on S-valued Graph
M. Rajkumar (2016) introduced the homomorphism on S-valued 
graph. He published in the International Journal of Engineering 
and Technology. He derived the concepts of homomorphism and 
isomorphism between two S-valued graphs.

According to him, let S1 and S2 be semirings. A function β : S1 
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→ S2 is a homomorphism of semirings if β (a + b) = β (a) + β (b) 
and β (a · b) = β (a) · β (b) for all a, b ∈ S1. 

The author has introduced the notion of homomorphism 
and isomorphism on S-valued graphs. We study whether the 
isomorphism of graphs prevents the regularity conditions or not.

Further, M. Rajkumar and M. Chandramouleeswaran are going 
to extend S-valued homomorphism into S-valued isomorphism.

Strong and Weak Vertex Domination on S-valued Graph
S. Jeyalakshmi defined a dominating set X  is said to be a strong 
dominating set if for every vertex u ∈ V − X then is a vertex v 
∈ X with deg(v) ≥ deg(u) and we conclude that the vertex u is 
adjacent to v.

A dominating set X is said to be a weak dominating set if for 
every vertex u ∈ V – X there is a vertex v ∈ X with deg(v) ≤ deg(u) 
and u is adjacent to v.

The study of domination in graph theory is the fastest growing 
area. So she introduced the notion of strong and weak vertex 
domination on S-valued graphs and proof of some simple results.

Vertex Domination Number in S-valued Graph
In 2016 S. Jeyalakshmi presented the vertex domination number 
in S-valued graph in the International Journal of Innovative Research 
in Science, Engineering and Technology.

Consider the S-valued graph GS = (V, E, σ, ψ). Let u ∈ V be 
a vertex of GS whose degree in the crisp graph G of GS is equal to 
(G). That is (G) = deg(u). Let w ∈ V be a vertex of GS whose degree 
in the crisp graph G of GS equal to ∆(G). That is ∆(G) = deg(w). 
The minimum degree and the maximum degree of the S-valued 
graph GS are defined as 
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v N u s
S
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We analyse the vertex domination number in S-valued graph. The 
authors Jeyalakshmi. S and Chandramouleeswaran. M gave some 
results on the bounds of the weight-dominating vertex number 
of S-valued graphs.

K-colourable S-valued Graph
K-colourable S-valued graph was introduced by T.V.G. Shriprakash 
in the year 2017 (April). He published in the International Journal 
of Pure and Applied Mathematics.

An S-valued graph GS is said to be k-colourable, if it has a 
proper vertex regular or total proper colouring such that |C| = k.

In proper, the vertex colouring of the graph G, the vertices 
that receive the common colour are independent. The vertices that 
receive a particular colour make up a colour class.

In any chromatic partition of V(G), the parts of the partition 
constitute the colour classes, which allow an equivalent way of 
defining the chromatic number. 

Finally, the author worked about the upper bounds of 
K-colourable S-valued graphs.

Total Weight Domination Vertex Set on S-valued Graph
In the year 2017 (July), this paper was introduced by S. Jeyalakshmi 
in the Mathematical Science International Research Journal. She says 
a vertex v in Gs said to be a weight-dominating vertex if σ(u) ≤ 
σ(v), for all u ∈ V.

A subset D ⊆ V is said to be a weight-dominating vertex u set 
of GS if for each v ∈ D σ(u) ≤ σ(v), for all u ∈ Ns (v). If Ns (TD

S = Vs, 
then TD

S is called a total weight-dominating vertex set of Gs.
Berge introduced the domination in graphs. Nowadays the 

most leading area is vertex domination. The author moved and 
worked about the domination of vertex set on S-valued graph. So 
he introduced “the total weight domination vertex set on S-valued 
graphs”. They give some properties and simple proofs.

Cartesian Product of Two S-valued Graph
This paper was introduced by M. Sundar in 2017. Products of graph 
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have lead several areas of research in graph theory. Algebraic 
graph theory can be viewed as an extension of graph theory in 
which algebraic methods are applied to problems about graphs.

He defined 
Let 
G1

S = (V1, E1, s1, ψ1) 
where 
V1 = {vi |1 ≤ p1 ≤ p1}, 
E1 ⊂ V1 × V1 
and 
G2

s = (V2, E2, s2, ψ2) 
where 
V2 = {v2|1 ≤ j ≤ p2}, 
E2 ⊂ V2 × V2 

be two given S-valued graphs. 
V1 × V2 = {wij = ( vi. uj)|1 ≤ i ≤ p1, 1 ≤ j ≤ p2}; E1 x E2 ⊂ V1 × V2.
The Cartesian product of two S-valued graphs G1

S and G2
S = 

is a graph defined as 
GS = G1

S G2
S = (V = V1 × V2, E = E1 × E2, σ = σ1 × σ2, ψ = ψ1 x ψ2), 

where 
V = {wij (vi, uj) vi ∈ V1 and uj ∈ V2 
and two vertices wij and wkl are adjacent if i = k and ujul ∈ E2 

or j = l and vivk ∈ E1.
In this paper, the author discussed the concept of Cartesian 

products of two S-valued graphs.

Neighbourly Irregular S-valued Graphs
M. Rajkumar (2017) introduced neighbourly irregular S-valued in 
the International Journal of Pure and Applied Mathematics.

A graph is said to be regular if every vertex has equal degree, 
otherwise it is called a irregular graph.
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A graph in which for each vertex v of G, the neighbours of v 
have distinct degrees, is called a locally irregular graph.

A connected graph is said to be highly irregular if for every 
vertex v, u, w N(v), u ≠ w implies that deg u ≠ deg w. That is, every 
vertex is adjacent only to vertices with distinct degrees.

M. Chandramouleeswaran and others introduced the notion 
of S-valued graphs and regularity on S-valued graphs. Here they 
introduced the notion of irregularity conditions on S-valued graphs.

First they successfully define the locally r-regular graph 
which has equal degree of vertices. Further, they define the locally 
r-irregular graphs which have the distinct number of vertices. It 
is more generally in a way that the irregularity conditions on a 
crisp graph.

Conclusion
S-valued graph is the combination of algebraic structure and 
a graph. Its origin is discussed in this paper. Further we try to 
develop the S-valued graph in some different way.
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History of Optimization Models in 
Evolutionary Algorithms  

 K. Bharathi

Abstract: The collection of optimization techniques, which 
is functioning based on metaphors of biological processes, is 
termed evolutionary algorithm. A multi-objective optimization 
problem has several incompatible objectives with a set of Pareto 
optimal solutions. A developed set of solutions as population, 
evolutionary algorithms in multi-objective optimization is 
able to estimate the Pareto optimal position. We have a review 
and overview of development in evolutionary algorithm for 
multi-objective optimization during the last sixteen years. 
Here, we discuss about the history of the framework, related 
algorithms development and their applications and some of the 
methodologies used in it so far.

Keywords: Algorithms, evolutionary algorithm, multi-objective 
optimization problem, Pareto evolutionary algorithm, new 
quantum evolutionary algorithm.

Introduction 
Evolutionary algorithms (EAs) are the machine learning 
approaches from natural collection in the biological world 
(Sharma et al. 2017). EAs vary from more established optimization 
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techniques, where EAs involve a set of solutions called population. 
The iterations of an EA involve an aggressive selection that includes 
feasible solutions. A set of solutions is operated by using one or 
more operations to get a best optimal solution. If we have more than 
one criterion to be optimized with several conditions, said to be a 
constraint equation, such a problem is named as multi-objective 
optimization (Nanvala 2011). The processing method of the EA is 
presented in fig. 35.1.

Representation of Evolutionary Algorithms 
The relation made to the solution space elements by encoding the 
phenotype values to a genotype value is said to be the relation 
of representation. Since evolutionary algorithm can make use of 
genotype representation as an encoded solution so as to precede 
in the algorithm it is represented in many ways. The different 
ways of evolutionary representation is genetic algorithm, genetic 
programming, evolution strategy and many more.

GENETIC ALGORITHM  

The development of genetic algorithms was handled by many 
authors to extend the solution space of the model of optimality and 

fig. 35.1: Basic evolutionary algorithm 
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to find the optimal result for the technical real world formulation. 
The improved genetic algorithms are stochastic in natural world 
models with thier condition of sufficiency is applied to technical 
real world formulation in fig. 35.2.

GENETIC PROGRAMMING  

A unique representation in the model of genetic algorithm is 
referred to as genetic programming. The real value solution of the 
phenotype is encoded as a graphical tree-shaped genome which is 
the vital position of genetic programming. All the sets of solution 
to the problem will have a characterized representation as a tree-
shaped genotype solution with its fitness condition applied to each 
of the solutions. The generalized approach of genetic programming 
is scheduled in fig. 35.3.  

EVOLUTION STRATEGY 

Evolution strategy, which works out from the year 1968, is an 
old method evolved before genetic algorithm. This strategy 
gives the best result to the models involving continuous variable 
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fig. 35.2: Flow of genetic algorithm
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rather than the discrete variable model. Strategy of evolutionary 
encoding system differs from its genome as a real value vector 
space applied in machine-based model. The encoded structure 
differs from nature-based operating tool comparing with other 
representations. In general, the operators are differed by their 
names such as endogen instead of crossover and size of the step is 
replaced by the value of mutation. Especially, the gene of the bits 
of the representation is a real valued parameter-setting allocation. 
Hence, the generalized flow of the evolutionary strategy is shown 
in fig. 35.4.

EVOLUTION PROGRAMMING  

Evolution programming, works out from the year 1960, was 
introduced by Lawrence. This programming method gives the 
best result to the models involving continuous variable rather 
than the discrete variable model and its similarity to evolution 
strategies. Evolution programming in the encoding system differs 

fig. 35.3: Flow of genetic programming
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to its genome as a real-value vector space applied in machine-
based model. The encoded structure differs from nature-based 
operating tool comparing with other representations. In general, 
the operators were differed by their names such as size of  the 
step is replaced by the value of mutation. Especially, the gene 
of the bits of the representation is as a real-valued parameter 
setting allocation. Hence, the generalized flow of the evolution 
programming is shown in fig. 35.5.

Multi-objective Optimization  
A multi-objective optimization problem involves a number of 
objective functions which are to be either minimized or maximized. 
As in a single-objective optimization problem, the multi-objective 
optimization problem may contain a number of constraints which 
any feasible solution (including all optimal solutions) must satisfy. 
Since objectives can be either minimized or maximized, we state 
the multi-objective optimization problem in its general form:  

fig. 35.4: Flow of the evolution strategy
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Optimize		  fm(x)		  m = 1, 2, 3, ..., M
Subject to 		  gn(x) ≥ 0 	 n = 1, 2, 3, ..., N
			   hK(x) = 0		 K = 1, 2, 3, ..., K

			   xi
L  ≤ xi ≤ xi

U`	 i = 1, 2, 3, ..., n

		  	 ∀ x ≥ 0,

where M is the number of objective functions, N is the number 
of unequal constraint, K is the number of equality constraint, L 
denotes the lower limit value and U denotes the upper limit value. 

The main difference between the single-objective and multi- 
objective optimization is that in the multi-objective optimization, 
the objective functions constitute a multi-dimensional space, in 
addition to the usual decision variable space. This additional 
M-dimensional space is called the objective space, Z ⊂ RM. For 
each solution, x in the decision variable space, there exists a point 
z ∈ RM in the objective space.
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fig. 35.5: Flow of evolution programming 
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Conclusion 
A multi-objective optimization problem has many complicated 
objectives with a set of Pareto optimal solutions. A developed  
set of solutions as population, evolutionary algorithms in multi-
objective optimization estimates the Pareto optimal position. Here, 
we have dealt with a general overview of evolutionary algorithms 
to multi-objective optimizations in the past sixteen years. We have 
discussed the algorithms, methodology used, applied field and 
significant works. Also the most delegate existing study trends 
were discussed and provided the advantages present in using 
EAs in the different fields. 
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Graph Theory for Detection of Crime

C. Yamuna 
T.N. Kavitha

Abstract: Nowadays, we are facing many problems, related 
to crime and to solve these problems mathematics is being 
used. In this paper we shall examine the role of one branch of 
mathematics i.e. graph theory, in addressing such problems of 
society. We have chosen to present mathematic related topic from 
the field of graph theory because graphs have wide-ranging 
applicability and it is possible  to bring a previously unfamiliar 
scientist to the frontiers of research rather quickly. The graph 
theory has been used beyond simple problem formulation. 
Sometimes, a part of a large problem corresponds exactly to a 
graph-theoretic problem, and that problem can be completely 
solved.

Keywords: Accusation, crime, logical, suspect, node, graph.

Introduction
How to solve the crime using the graph theory? We have chosen 
three persons named Alice, Bob and Charlie or simply we call 
A, B and C. Each of them has given a statement, regarding an 
accusation. We can form a graph with three nodes and solve who 
has done the crime out of those three persons. 



498  | History and Development of Mathematics in India

Can it be possible to work out the three cases? The answer is 
yes, and it is not so difficult. Usually if a problem is formulated 
through graph theory, it can be solved by the  process of 
simplifications, consideration of important aspects such as 
changing of relationship frequently or looking into strenghth of 
effects, and omission of unimportant aspects.

If someone suggests that the graph theory is a panacea and by 
itself we can solve a large number of problems, we can disclaim 
that statement. But graph theory is just one tool, which sometimes 
solves problems and sometimes gives us insights. It usually has to 
be used along with many other tools, mathematical or otherwise. 
Hopefully, the use of the graph theory can help us to understand 
in small ways the large problems that confront our society, and 
some possible solutions. Finally, let us remember that applied 
mathematics develops when it is in close contact with applications. 

Resolving of a Crime Using Graph 
We have chosen three persons named Alice, Bob and Charlie or 
simply we call A, B and C. Each of them has made a statement, 
containing an accusation. A says I am not the thief. B says A is the 
thief and C says I am not the thief, here we also know that only 
one person is telling the truth. 

Suppose A was the thief, then B and C would be telling the 
truth, but only two persons appear to be telling the truth when 
we know that there should only one who is the thief. If B is the 
thief then both A and C are telling the truth. That way we have to 
eliminate by using the graph in order to come to the conclusion. 

But what if you have more suspects say four or five and with a 
more complicated set of accusations, can we find a quicker method 
to solve this kind of problems? 

Let us take it. You suspect and represent them as a small dot 
in space or a node now. B accuses A, so you can represent this by 
drawing a direct line from B to A. 

C says I am not the thief, so we think of this as being equivalent 
to accusing everyone else both B and A. So C has a line going to 
both B and A. 
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Similarly, A says I am not the thief. So A accuses both B and 
C, this kind of diagram is called a graph. So we use it to solve the 
crime.

A

C
B

Let us go over the cases, we considered if any of the thieves will 
reconstruct the graph ignoring all the lines coming out of B accuses 
A. So they have a line directed into only one person is telling the 
truth; this means there should only be one line going into A, since 
there are two lines going to A, A cannot be the thief.

If we consider B as the thief again, then ignoring all the lines 
going out of B. We see that, there’s still two lines direction to be the 
two accusations from A and C. This would mean that the A and C 
were telling the truth. So, this cannot be the case. Finally, we come 
to see B accusation from A. So it has no line directed into C. But 
there is an accusation from A. So there’s only one line going into 
C and only one person telling the truth. This is the only logically 
consistent case. So C is the thief.

Algorithm
Step 1: Take a node, add up the number of lines going into.
Step 2: Count the number of lines going in (this gives us a number 
of people telling the truth if that person is a thief, then move on 
to the next node and repeat so for all three persons).
Step 3: This method is not so short because fo the process of going 
through the statement of each person and move from case-by-case.
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Resolving Crime Using Graph  where more than three 
Persons are Involved 
Now, we have chosen four people A, B, C and D, and only one of 
them is telling the truth. A, C and D the give the same statement 
that  say, B is a thief.

 We can draw a graph filling in the lines coming from A, C, 
D looking at B.

B

DC

A

We have constructed two lines going to B and from B, three 
lines are going, C has one and D has two. The list gives us a number 
of people that will be telling the truth. So, if one person were telling 
the truth, C is again the thief. However, we know that, free people 
are having the troops then we can immediately see that B is the 
only case of free people, and therefore C can be identified as the 
thief. If there are two persons telling the truth, then we have two 
possible solutions A or D. So, it could be either of them.

However, with more information we can tell exactly which 
one, but we do know that it is definitely not B or C. So, we form a 
list that gives us all of the possible solutions for any set of suspects 
and accusations. We have to form a list and match the numbers to 
study how many persons are telling the truth. 

Applications
This method of solving problems can be used in artificial 
intelligence and computer science. Mathematicians and scientists 
need to develop system solutions. That can be easily implemented 
incorporating into computer program. 
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Conclusion 
One should have computer coding to follow an algorithm like this, 
which is remarkably easy. So, one can write a program using this 
method to find all of the possible solutions. For a larger set of the 
suspects, say 100 of them, it can be done in a short span of time.
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A Discussion on 
Real Life Application of Mathematics

T.N. Kavitha
B. Akila 

Abstract: The area of study in the history of mathematics is 
primarily discovered. We investigate the origin of discoveries 
in mathematics and, to a lesser extent, an investigation into the 
mathematical methods and notation of the past. The study of 
mathematics as a study in its own right began in the sixth century 
bce with Pythagoras, who coined the term “mathematics” 
from the ancient Greek term mathema, meaning “the subject of 
instruction”. Greek mathematicians greatly refined the methods 
and expanded the subject matter of mathematics. In this paper, 
we try to present the application of calculus in the transition 
curve of a rail track. 

Keywords: Calculus, transition, Greek mathematics. 

Introduction
From time immemorial, mathematics is part and parcel of human 
life, it most probably began with counting. Here is an attempt to 
learn the history of mathematics and thus we get to know some 
of the greatest mathematical minds and their contributions. 

Mathematics is the mother of all intentions in this world. The 
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foremost three developments in the civilization of human being 
are: (1) invention of fire, (2) invention of maths, and (3) invention 
of the circle. Because, based on these, man invented a number of 
scientific and medical equipment.

The first invention of man when he started to learn mathematics 
was a circle or the wheel. With the help of the circle or wheel, he 
created most scientific equipment and machinery. 

There is much application of integral calculus in real life and 
engineering. Application of the equation of the curve is discussed 
here.

Cartesian Form of the Equation of the Curve 
Let P be any point on a given curve and Q a neighbouring point.  
Let arc AP = s and arc PQ = δs. Let the tangents at P and Q make 
angles Ψ and Ψ + δΨ with the X axis, so that the angle between 
the tangents at P and Q = δΨ. In moving from P to Q through a 
distance δs, the tangent turns through the angle δΨ. This is called 
the total bending or total curvature of the arc PQ. 

The average curvature of arc PQ = �
�
�
s . The limiting value of 

average curvature when Q approaches P is defined as the curvature 
of the curve at p. 
	 	 Thus, curvature K (at P) = d

ds
Ψ .		                (1)

Since δΨ is measured in radians, the unit of curvature is radians per unit 
length, e.g. radians per centimetre.
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Definition 
Radius of curvature: The reciprocal of the curvature of a curve at 
any point P is called the radius of the curvature at P and is denoted 
by ρ, so that ρ = ds

dΨ
.

Radius of Curvature for Cartesian Curve 
Let the equation of the curve in Cartesian form be y = f(x), then  
tan α = dy/dx = y or f(x) so that α = tan − 1y1 and hence, dα/dx = 
1/(1 + y1

2).
We know

ds dx ds
dx

y/ .� � �1 1
2

The curvature at a point S (x, y) is expressed in terms of the first 
derivative (y1) and second derivatives (y2) of the function f(x) by 
the formula. Therefore, 

k da
ds

da
da

dx
ds

y
y y

� � �
�

�
�

2

1
2

1
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Thus, we obtain  

k da
ds

y

y
� �

�� �
2

1
2 3 2

1

The absolute value of the ratio k = d
ds
Ψ  is called the mean curvature 

of the arc PQ. In the limit as ds → 0, we obtain the curvature of 
the curve at the point P. k = lim

ds

d
ds�0

� . From this definition, it follows 
that the curvature at a point of a curve characterizes the speed 
of rotation of the tangent of the curve at the point. The following 
is the application of this concept in a curve shape turning of the 
railway track. Here it shows that mathematics has an application 
in real life.

Transition Curve of a Rail Track

A track transition curve, or spiral easement, is a mathematically 
calculated curve on a section of highway, or railroad track, in 
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which a straight section changes into a curve. It is designed to 
prevent sudden changes in lateral (or centripetal) acceleration. In 
an aerial view, the start of the transition of the horizontal curve is 
at infinite radius, and at the end of the transition, it has the same 
radius as the curve itself and so forms a very broad spiral.  At the 
same time, in the vertical plane, outside of the curve is gradually 
raised until the correct degree of bank is reached.

If such an easement was not applied, the lateral acceleration 
of a rail vehicle would change abruptly at one point (the tangent 
point where the straight track meets the curve) with undesirable 
results. With a road vehicle, the driver naturally applies the 
steering alteration in a gradual manner, and the curve is designed 
to permit that, by using the same principle of radius of curvature.

The transition curves in modern highway and railway 
construction are route elements equally crucial as alignment 
and curve (circular). In order to prevent a sudden change of the 
centrifugal force, the transition curve must be applied due to 
the impact of the motion in a sharp curve. Over the years, the 
application of the adorned has become widespread in many 
countries. However, in this study, in order to eliminate the 
problems concerning the road dynamics, created by adorned for 
vehicles at high speed, sinusoid their fundamental mathematical 
expression, calculation of point coordinates, driving, dynamic 
characteristics of sinusoid are described the curvature and lateral 
impact along the sinusoid is presented. Sinusoid is dealt with as 
an ideal curvature diagram which has curve and superelevation 
ramp in the articles. 

fig. 37.2: Tangent point at intersection of curve
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At high speeds trains cannot pass abruptly from a straight 
stretch of track to a circular track of high curvature. In order to 
make the change of direction gradual, engineers make use of 
transition curves to connect the straight part of a track with a 
circular track. Generally, arcs of cubical parabola are employed. 

Suppose the transition curve on a railway track has the shape 
of an arc of the cubical parabola y = (1/3)x3, where x and y denote 
the measurements in miles. Find the rate of change of direction of 
a train when it is passing through the point (1, 1/3) on this track. 

 By differentiation of y = (1/3)x3, we have dy/dx = x2 and d2y/
dx2 = 2x.

Substituting these in equation (1), we have 

 At (1, 1/3), k = 
2

2
1
23 2 =  radian per mile (see equation (1)). This 

is the rate of change of direction of the train at the given point (1, 
1/3). Actually, speed on transition curve = speed on circular curve. 

Definitions
	 1. 	Cant or super elevation is the amount by which one rail is 

raised above the other rail. It is positive when the outer rail 
on a curved track is raised above inner rail and is negative 
when the inner rail on a curved track is raised above the 
outer rail.

	 2. 	Equilibrium speed is the speed at which the centrifugal force 
developed during the movement of the vehicle on a curved 
track is exactly balanced by the cant provided.
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	 3. 	Cant Deficiency – Cant deficiency occurs when a train travels 
around a curve at a speed higher than the equilibrium speed. 
It is the difference between the theoretical cant required for 
such higher speed and the actual cant provided.

	 4. 	Cant Excess – Cant excess occurs when a train travels around 
a curve at a speed lower than the equilibrium speed. It is the 
difference between the actual cant and the theoretical cant 
required for such a lower speed.

Length of Transition Curve and Setting Out Transitions 
	 1.	 The desirable length of transition L shall be maximum of 

the following three values: 
		  a. L  =  0.008 Ca × Vm

		  b. L  =  0.008 Ca × Vm

		  c. L  =  0.72 Ca ,
		  where L = the length of transition in metres. 
		            Vm = maximum permissible speed in kmph
		            Cd = cant deficiency in millimetres.
		            Ca = actual super elevation on curve in millimetres.
		  The formulae (a) and (b) are based on rate of change of cant 

and deficiency of 35 mm per second. The formula (c) is based 
on the maximum cant gradient of 1 in 720 of 1.4 mm per 
metre. 

	 2. 	For the purpose of designing future layouts of curve, future 
higher speeds (such as 160 km/h for Group A routes and 
130 km/h for Group B routes) may be taken into account 
for calculating the length of transitions.

	 3. 	In exceptional cases where room is not available for 
providing sufficiently long transitions in accordance with 
the above, the length may be reduced to a minimum of 2/3 
of the desirable length as worked out on the basis of formula 
(a) and (b) above, or 0.36 Ca (in metres) whichever is greater. 
This is based on the assumption that a rate of change of cant/
cant deficiency will not exceed 55 mm per second and the 
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maximum cant gradient will be limited to 2.8 mm per metre 
or 1 in 360. This relaxation shall apply to Broad Gauge only. 
For Narrow Gauge and Metre Gauge sections, cant gradient 
should not be steeper than 1 in 720. For Metre Gauge, the 
rate of change of cant/cant deficiency should not exceed 35 
mm/second.

	 4. 	At locations where length of transition curve is restricted 
and, therefore, may be inadequate to permit the same 
maximum speed as calculated for the circular curve, it will 
be necessary to select a lower cant and/or a lower cant 
deficiency which will reduce the maximum speed on the 
circular curve but will increase the maximum speed on the 
transition curve. In such cases, the cant should be so selected 
as to permit the highest speed on the curve as a whole. 

Application of Mathematics 
Mathematics is used in almost all fields. Some of them are 
mentioned below: 
		    1. astronaut,
		    2. astronomy, 
		    3. astrology,
		    4. astrophysics,
		    5. physics,
		    6. statistics,
		    7. various surveys,
		    8. planning,
		    9. to find probability,
		  10. war field,
		  11. economics,
		  12. geography,
		  13. medical,
		  14. computers, etc. 

Moreover, mathematical calculations are very useful from our 
birth to death; we entirely depend upon the various electronics 
and non-electronic equipment, which are farmed based on 
mathematics.  
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History of Operations Research

J. Sengamalaselvi

Abstract: Operations Research (Operational Research, OR, or 
Management Science) includes a great deal of problem-solving 
techniques like mathematical models, statistics and algorithms 
to aid in decision making. Operations Research is employed to 
analyse complex real-world systems, generally with the objective 
of improving or optimizing performance. In other words, 
Operations Research is an interdisciplinary branch of applied 
mathematics and formal science which makes use of methods 
like mathematical modelling, algorithms statistics and statistics 
to reach optimal or near optimal solutions to complex situations. 
It is usually worried about optimizing the maxima (for instance, 
profit, assembly line performance, bandwidth, etc.) or minima 
(for instance, loss, risk, cost, etc.) of some objective function. 
Operational Research aids the management to accomplish its 
objectives utilizing scientific methods. The area of study known 
as the history of mathematics is primarily an investigation into 
the origin of discoveries in mathematics and, to a lesser extent, 
an investigation into the mathematical methods and notation 
of the past. Operations Research is a core course of many 
management majors. The aim of this paper is to present the 
history of Operations Research.
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Introduction
It is generally agreed that Operations Research came into existence 
as a discipline during the Second World War when there was a 
critical need to manage scarce resources. However, a particular 
model and technique of Operations Research can be traced back 
as early as in the First World War, when Thomas Edison (1914-15) 
made an effort to use a tactical game board for finding a solution 
to minimize shipping losses from enemy submarines, instead of 
risking ships in actual war conditions about the same time A.K. 
Erlang, a Danish engineer, carried out experiments to study the 
fluctuations in demand for telephone facilities using automatic 
dialling equipment. Such experiments, later on, were used as the 
basis for the development of the waiting-line theory.

Since the war involved strategic and tactical problems that 
were highly complicated, to expect adequate solutions from 
individuals or specialists in a single discipline was unrealistic. 
Therefore, groups of individuals who were collectively considered 
specialists in mathematics, economics, statistics and probability 
theory, engineering, behavioural and physical sciences, were 
formed as special units within the armed forces, in order to deal 
with strategic and tactical problems of various military operations.

Such groups were first formed by the British Air Force and, 
later, the American armed forces formed similar groups. One of 
the groups in Britain came to be known as Blackett Circus. This 
group, under the leadership of P.M.S. Blackett was attached to the 
Radar Operational Research unit and was assigned the problem 
of analysing the coordination of radar equipment at gun sites. The 
effort of such groups, especially in the area of radar deduction, is 
still considered vital for Britain in winning the air battle. Following 
the success of the group, similar mixed-team approach was also 
adopted in other allied nations.

After the war was over, scientists who had been active in 
the military Operations Research groups made efforts to apply 
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the Operations Research approach to civilian problems related 
to business, industry, research and development, etc. There are 
three important factors behind the rapid development of using 
the Operations Research approach. 
	 i. 	The economic and industrial boom after the Second World 

War resulted in continuous mechanization, automation and 
decentralization of operations and division of management 
functions. This industrialization also resulted in complex 
managerial problems and, therefore, the application of 
operations research to managerial decision making became 
popular.

	 ii. 	Many operations researchers continued their research after 
the war. Consequently, some important advancements 
were made in various operations research techniques. 
In 1947, P.M.S. Blackett developed the concept of linear 
programming, the solutions of which are found by a method 
known as simplex method. Besides linear programming, 
many other techniques of Operations Research such as 
statistical quality control, dynamic programming, queuing 
theory and inventory theory were well-developed before 
the end of the 1950s.

	 iii.	 Greater analytical power was made available by high-speed 
computers. The use of computers made it possible to apply 
many Operations Research techniques for practical decision 
analysis.

During the 1950s, there was substantial progress in the 
application of Operations Research techniques for civilian activities 
along with a great interest in the professional development and 
education of Operations Research. Many colleges and universities 
introduced Operations Research in their curricula. These were 
generally schools of engineering, public administration, business 
management, applied mathematics, economics, computer science, 
etc. Today, however, service organizations such as banks, hospitals, 
libraries, airlines and railways, all recognize the usefulness of 
Operations Research in improving their work efficiency. In 1948, 
an Operations Research club was formed in England which later 
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changed its name to the Operations Research Society of UK. Its 
journal, OR Quarterly first appeared in 1950. The Operations 
Research Society of America (ORSA) was founded in 1952 and its 
journal, Operations Research was first published in 1953. In the same 
year, The Institute of Management Sciences (TIMS) was founded 
as an international society to identify, extend and unify scientific 
knowledge pertaining to management. Its journal, Management 
Science, first appeared in 1954.

At the same point of time, R.S. Verma also set up an OR team at 
Defence Science Laboratory for solving problems of store, purchase 
and planning. In 1953, P.C. Mahalanobis established an Operations 
Research team in the Indian Statistical Institute, Kolkata for solving 
problems related to national planning and survey. The OR Society 
of India (ORSI) was founded in 1957 and it started publishing its 
journal OPSEARCH 1964 onward. In the same year, India along 
with Japan, became a member of the International Federation of 
Operational Research Societies (IFORS) with its headquarters in 
London. The other members of IFORS were UK, USA, France and 
West Germany. 

A year later, project scheduling techniques – Program 
Evaluated and Review Technique (PERT) and Critical Path 
Method (CPM) – were developed as efficient tools for scheduling 
and monitoring lengthy, complex and expensive projects of that 
time. By the 1960s Operations Research groups were formed in 
several organizations. Educational and professional development 
programmes were expanded at all levels and certain firms, 
specializing in decision analysis, were also formed.

The American Institute for Decision Science came into 
existence in 1947. It was formed to promote, develop and apply 
quantitative approach to functional and behavioural problems of 
administration. It started publishing a journal, Decision Science, 
in 1970. 

Because of Operations Research’s multidisciplinary character 
and its application in varied fields, it has a bright future, provided 
people devoted to the study of Operations Research can help 
meet the needs of the society. Some of the problems in the area 
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of hospital management, energy conservation, environmental 
pollution, etc. have been solved by Operations Research specialists. 
This is an indication of the fact Operations Research can also 
contribute towards the improvement of the social life and of areas 
of global need. However, in order to make the future of Operations 
Research brighter, its specialists have to make good use of the 
opportunities available to them.

Definitions of Operations Research
Because of the wide scope of application of Operations Research, 
giving its precise definition is actually difficult. However, a few 
definitions of Operations Research are as follows:
	 i.	 Operations Research is the application of the methods 

of science to complex problems in the direction and 
management of large systems of men, machines, materials 
and money in industry, business, government and defence. 
The distinctive approach is to develop a scientific model 
of the system incorporating measurements of factors such 
as chance and risk, with which to predict and compare the 
outcomes of alternative decisions, strategies or controls. The 
purpose is to help management in determining its policy 
and actions scientifically.

	 ii.	 The application of the scientific method to the study of 
operations of large complex organizations or activities. It 
provides top-level administrators with a quantitative basis 
for decisions that will increase the effectiveness of such 
organizations in carrying out their basic purpose.

Apart from being lengthy, the definition given by Operational 
Research Society of UK has been criticized because of the emphasis 
it places on complex problems and large system, leaving the 
reader with the impression that it is a highly technical approach 
suitable only to large organizations. The definition of OR Society 
of America contains an important reference to the allocation of 
scarce resources. The keywords used in the above definitions 
are scientific approach, scarce resources, system and model. The 
British definition contains no reference to optimization, while 
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the American definition has no reference to the word, best. 
However, all two definitions point to the following characteristics 
of Operations Research:
	 i.	 Use of scientific method.
	 ii.	 Use of models to represent the complex relationships.
	 iii.	 Interdisciplinary approach.
	 iv.	 Provision of a quantitative basis for decision making.

A few other definitions, commonly used and widely 
acceptable, are as follows:
	 i.	 Operations Research is the systematic application of 

quantitative methods, techniques and tools to the analysis 
of problems involving the operations of systems. 

	 ii.	 Operations Research is essentially a collection of mathematical 
techniques and tools, which in conjunction with a systems 
approach, are applied to solve practical decision problems 
of an economic or engineering nature.

These two definitions refer to the interdisciplinary nature of 
Operations Research. However, there is nothing that can stop one 
person from considering several aspects of the problem under 
consideration. Best definition of Operation Research is as follows:
	 *	 Operation Research, in the most general sense, can be 

characterized as the application of scientific methods, 
techniques and tools, to problems involving the operations 
of a system so as to provide those in control of the operations 
with solutions to the problems.

This above definition(*) refers to the military origin of the 
subject, where team of experts were not actually participating in 
military operations for winning the war but providing advisory 
and intellectual support for initiating strategic military actions.

This definition refers operations research as technique for 
selecting the best course of action out of the several courses of 
action available, in order to reach the desirable solution of the 
problem.
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A few other definitions of Operations Research are as follows: 
	 •	 Operations Research has been described as a method, an 

approach, a set of techniques, a team activity, a combination 
of many disciplines, an extension of particular disciplines 
(mathematics, engineering, economics), a new discipline, 
a vocation, even a religion. It is perhaps some of all these 
things.

	 •	 Operations Research may be described as a scientific 
approach to decision making that involves the operations 
of organizational system. 

	 •	 Operations Research is a scientific method of providing 
executive departments with a quantitative basis for decisions 
regarding the operations under their control.

	 •	 Operations Research is applied decision theory. It uses 
any scientific, mathematical or logical means to cope with 
the problems that confront the executive, when he tries to 
achieve a thoroughgoing rationality in dealing with his 
decision problems.

	 •	 Operations research is a scientific approach to problem
solving for executive management.

As the discipline of Operations Research grew, numerous 
names such as Operations Analysis, Systems Analysis, Decision 
Analysis, Management Science, Quantitative Analysis and 
Decision Science were given to it. This is because of the fact that the 
types of problems encountered are always concerned with effective 
decision, but the solution of these problems do not always involve 
research into operations or aspects of the science of management.

Features of Operations Research Approach
The board-based definition of Operations Research, with 
the additional features is as follows: Operations Research 
utilizes a planned approach following a scientific method and 
interdisciplinary team, in order to represent complex functional 
relationship as mathematical models, for the purpose of providing 
a quantitative basis for decision making and uncovering new 
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problems for quantitative analysis. The board features of 
Operations Research approaches to any decision problem are 
summarized below:

INTERDISCIPLINARY APPROACH

Interdisciplinary approach for solving a problem of interdisciplinary 
teamwork is essential. This is because while attempting to solve 
a complex management problem, one person may not have the 
complete knowledge of all its aspects (such as economic, social, 
political, psychological, engineering, etc.). This means we should 
not expect one person to find a desirable solution to all managerial 
problems.) Therefore, a team of individuals specializing in 
mathematics, statistics, economics, engineering, computer science, 
psychology, etc. should be organized in a way that each aspect of 
the problem can be analysed by a particular specialist in that field. 
This would help to arrive to an appropriate and desirable solution 
of the problem. However, there are certain problem situations that 
can be analysed by even one individual. 

SCIENTIFIC APPROACH 

Scientific approach in Operations Research is the application of 
scientific methods, techniques and tools to problems involving the 
operations of systems so as to provide those in control of operations 
with optimum solutions to the problems. The scientific method 
consists of observing and defining the problem; formulating and 
testing the hypothesis; and analysing the results of the test. The 
data so obtained is then used to decide whether the hypothesis 
should be accepted or not. If the hypothesis is accepted, the results 
should be implemented, otherwise, an alternative hypothesis has 
to be formulated.

HOLISTIC APPROACH 

Holistic approach while arriving at a decision, an Operations 
Research team examines the relative importance of all conflicting 
and multiple objectives. It also examines the validity of claims of 
various departments of the organization from the perspective of 
its implications to the whole organization.
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OBJECTIVE-ORIENTED APPROACH 

An Operations Research approach seeks to obtain an optimal 
solution to the problem under analysis. For this, a measure of 
desirability (of effectiveness) is defined, based on the objective(s) 
of the organization. A measure of desirability so defined is then 
used to compare alternative courses of action with respect to their 
possible outcomes.

Operations Research Approach to Problem Solving
The most important feature of Operations Research is the use of 
the scientific method and the building of decision models. The 
Operations Research approach to problem solving is based on 
three phases, viz.:
	 i.	 judgement phase,
	 ii.	 research phase, and
	 iii.	 action phase.

JUDGEMENT PHASE 

This phase includes: 
	 a.	 Identification of the real-life problem.
	 b.	 Selection of an appropriate objective and the values related 

to this objective.
	 c.	 Application of the appropriate scale of measurement, that 

decides the measures of effectiveness (desirability).
	 d.	 Formulation of an appropriate model of the problem and the 

abstraction of the essential information, so that a solution to 
the decision-maker’s goals can be obtained.

RESEARCH PHASE 

This phase is the largest and longest amongst all the phases. 
However, even though the remaining two are not as long, they 
are also equally important as they provide the basis for a scientific 
method. This phase utilizes: 
	 a. 	Observations and data collection for a better understanding 

of the problem.
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	 b.	 Formulation of hypothesis and models.
	 c.	 Observation and experimentation to test the hypothesis on 

the basis of additional data.
	 d.	 Analysis of the available information and verification of the 

hypothesis using pre-established measures of desirability.
	 e.	 Prediction of various results from the hypothesis.
	 f.	 Generalization of the result and consideration of alternative 

methods.

ACTION PHASE 

This phase consists of making recommendations for implementing 
the decision. This decision is implemented by an individual who is 
in a position to implement actions. This individual must be aware 
of the environment in which the problem occurred, be aware of 
the objective, of assumptions behind the problem and the required 
omissions of the model. 

Conclusion
The Operations Research approach attempts to find global 
optimum by analysing interrelationships among the system 
components involved in the problem. One such situation is 
described below.

Consider the case of a large organization that has a number 
of management specialists but the organization is not exactly very 
well-coordinated. For example, its inability to properly deal with 
the basic problems of maintaining stocks of finished goods. To 
the marketing manager, stocks of a large variety of products are 
purely a means of supplying the company's customers with what 
they want and when they want it. Clearly, according to a marketing 
manager, a fully stocked warehouse is of prime importance to the 
company. But the production manager argues for long production 
runs, preferably on a smaller product range, particularly if a 
significant amount of time is lost when production is switched 
from one variety to another. The result would again be a tendency 
to increase the amount of stock carried but it is, of course, vital that 
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the plant should be kept running. On the other hand, the finance 
manager sees stocks in terms of capital that is unproductively tied  
up and argues strongly for its reduction. Finally, there appears 
the personnel manager for whom a steady level of production is 
advantageous for having better labour relations. Thus, all these 
people would claim to uphold the interests of the organizations, 
but they do so only from their own specialized points of view. 
They may come up with contradictory solutions and obviously, 
all of them cannot be right. In view of this problem that involves 
the whole system, the decision maker, whatever his specialization, 
will need help. It is in the attempt to provide this assistance that 
Operations Research has been developed.
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Graph Kernels in Protein Study
A Survey 

D. Vijayalakshmi 

Abstract: In recent research works, machine learning occupies 
an important place and has turned as an inevitable research 
discipline. The machine-learning methods analyses and extracts 
knowledge from available data and provides an easier way to 
understand the graph-structured data: proteins, protein–protein 
interaction, protein structures along chemical pathways, social 
networks, WorldWideWeb, programme flow. The prime objective 
of this paper is to present a survey of graph kernels in protein 
study, the special case of which includes kernels used in protein 
similarity study. 

Keywords: Graph kernel, proteins, protein similarity study.

Introduction
Social networks, chemical pathways, protein structures and 
programme flow analysis can be represented as graph-structured 
data. The studies in these areas are developed by support vector 
machines. To analyse and study in these areas, there are many 
machine-learning methods. Among them support vector machine 
methods are more efficient. This forms a class of kernel methods 
which yields a more effective result when compared to existing 
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methods. In this paper, some kernels, defined and used in the 
study of proteins, are discussed in brief. 

Schlkopf and Smola (2002) initialize this kernel method. 
Kashima et al. (2003) introduce a kernel based on random walks on 
graphs and reduce the computation of kernel to solving a system 
of linear simultaneous equation. This kernel takes into account all 
label paths without computing feature values explicitly. 

 Kernel is defined based on all possible walks by Gartner et 
al. (2003). Here the computation is made easy by using product 
graphs: Based on this direct product kernel, non-contiguous graph 
kernels were introduced and the main advantage of these is the 
expressivity of their features space. He also proves that complete 
graph kernel computation is like deciding whether the given set 
of graphs is isomorphic or not. 

Ramon and Gartner (2003) explain the method of computing 
the number of common sub-trees in two graphs. As we know, 
the sequence of label of vertices addresses a walk, every sub-tree 
pattern is addressed by a tree. Here the kernel counts the number 
of times the sub-trees of a tree pattern that occurs in given graphs. 
Let p be the root of sub-trees in the graph G1 and let q be the root 
of sub-trees in the graph G2. If the tree of height one is considered, 
then the kernel is defined by 

Kp, h, 1 =
 {1 if label (p) = label (q) h = 1.

	  0 if label (p) ≠ label (q) h = 1.
In the same way, sub-trees are considered for greater values of h. 

Mahe and Vert (2009) talk about the family of graph kernels 
based on the common tree patterns in the graphs. Two kernels 
with explicit features of spaces and inner product are derived 
from Ramon and Gartner (2003). The complexity of the feature 
characterizing the graphs is minimized using the parameter λ. 
Mahe generalizes the walk-based kernel to a board class of kernels. 
He also defines tree pattern, tree pattern counting function, tree 
pattern graph kernel. The kernel is defined based on the pattern-
counting function and this function returns a numerical value. 
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Mahe’s kernel:
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T set of trees 
p: T → Z+ is a tree weighting function. 
ϕt is tree pattern counting function. 
Hovarth et al. (2004) proposes a graph kernel based on tree 

and cyclic pattern, irrespective of how frequent it appears in graph. 
For computing this cyclic-pattern kernel, possible cyclic and tree 
pattern from the graph is taken into account and intersection is 
applied. The result proves that the cyclic-pattern approach is faster 
than graph kernel based on frequent use of patterns. 

Shervashidze et al. (2009) define graph kernels based on 
limited-size sub-graphs, i.e. graphs count all types of sub-graphs 
of three, four, five vertices. Using sampling method, the kernels 
are computed and these are applied to unlabelled graphs. 

Shervashidze and Borgwaedt (2010) next defines a fast sub-
trees kernel on graphs. He computes kernel for graphs with v 
nodes and e edges and maximum degree d and for sub-trees height 
t. He proves that this kernel can have a board application in bio-
informatics for protein function prediction, etc. 

A probem is called NP (Nondeterministic Polynomial) if 
its solution can be guessed and varified in polynomial time; 
nondeterministic means that no particular rule is followed to make 
the guess. A problem is NP hard if a method for solving it can 
be transformed into one for solving any NP problem. Borgwardt 
and Kriegel (2005) introduce kernel based on shortest path as 
considering all shortest paths and longest paths in a graph is NP 
hard. This kernel retains expressivity and is positive definite, i.e. 
the kernal proposed in paper “Borgardt, K.M. and H.P. Kriegel, 
2005, “Shortest-path Kernels on Graphs”, in Proceedings of the 
International Conference on Data Mining, pp. 74-81” can be 
translated or used for all paths in a graph. 

Jiang et al. (2014) propose a simple, efficient and effective 
classification approach using graph kernel based on labels of graph 
structure. Initially, the protein structure is modelled as a graph 
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based on amino acid sequence of protein. To the graph, kernel 
is applied to predict the function of protein. The result obtained 
classifies the protein according to its function. 

Kashima et al. (2004) discuss about various kernel function 
based on vertex label and edge labels. Label sequence kernel is 
introduced using random walks on graphs. He further reduces 
the computation of the kernel as solving system of simultaneous 
linear equations. The kernel defined in this part has a promising 
application in a wide variety of problems in bioinformatics. 

Thomas et al. (2009) introduces a substructure fingerprint 
kernel to identify the active sites of protein. In this part the protein 
is represented in terms of node labelled and edge weighted graphs. 

Aasa et al. (2013) present graph hopper kernel between graphs. 
This kernel counts similar sub-path. The shortest paths between 
node pairs from the two graphs are compared by this kernel. The 
important fact is that the graph kernel can be decomposed into 
weighted sum of node kernels. This kernel is applied on graphs 
with any kind of node attributes. It is trivial that this kernel is a 
parameter-free kernel. 

Costa and Grave (2010) introduce a neighbourhood sub-graph 
pairwise-distance kernel. This kernel depends on radius, distance 
and neighbourhood. K (G, G’) = (∑r ∑d kr, d(G, G’). Kr, d counts number 
of identical pairs of graphs of radius r and distance d. 

Shervashidze et al. (2011) present a general definition of graph 
kernels that covers many known graph kernels. General graph 
kernel based on Weisfeiler Lehman graph kernel is described 
with example. 

Matthias and Basak (2012) discuss the different types of kernel. 
The kernels are random walk kernel, shortest path kernel, tree 
pattern kernel, cyclic pattern kernel and graphlet kernel. Adding to 
this, he explains the application of these kernels in bioinformatics 
and cheminformatics. 

Mathiew et al. (2008) give a brief review of Weisfeiler kernel. 
They introduce modified Weisfeiler kernel and prove the efficiency 
of kernel from the computation point of view. 
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Malinda (2013) represents protein surface as a graph based on 
contacts between amino acids in an innovative way. To study the 
similarity between graphs, he implements a shortest path kernel 
method. On applying this kernel he reaches 77.1 per cent accuracy. 
He used the result to predict the protein functional sites. 

Giovanni et al. (2014) frame a new Weisfeiler–Lehman 
isomorphism test. This test consists of a new way of relabelling 
phase. From different ways of relabelling, they derive two kernels 
that compute faster than the existing kernels. 

Lixiang et al. (2015) define a mixed Weisfeiler–Lehman graph 
kernel based on Weisfeiler–Lehman test of isomorphism. This 
mixed kernel is applied to Weisfeiler–Lehman graph. The main 
advantage of this kernel is, it enhances accurate classification. 

Markus (2008) introduces graph kernel based on labelled walk. 
This kernel is constructed based on structural information of graph.  

Wenchao et al. (2016) identify the similarity between 
programmes using mixed Weisfeiler–Lehman graph kernel. The 
similarity is measured in the way the programmes call the set of 
function on execution of the programme. As similar programmes 
have similar way of data flow, the similarity is measured in this 
way. 

Mahe and Vert (2009), based on the sub-trees kernel defined 
by Ramon and Gartner (2003), propose two kernel functions with 
description of their feature spaces. A parameter is introduced, 
which increases the complexity of the sub-tree used. On decreasing 
the parameter, the kernel is the classical walk-based kernel. 
The formulation of this kernel initially allows generalizing the 
associated feature space of the sub-trees removed. 

A kernel is defined to predict protein–protein interaction in 
(Ben-Hur and Noble 2005). This kernel uses data from protein 
sequences, gene ontology annotation and properties of network 
to predict the interaction. 

Benoit et al. (2004) introduce a tree let kernel. This tree let 
kernel depends on cyclic information. Topological information 
is encoded and each tree let is assigned a weight which makes 
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computation easier. This kernel can be computed with relevant 
complexity based on cyclic pattern. 

Vishwanath et al. (2010) theoretically show that the existing 
kernels defined between graphs are related to each other. Second, 
he introduces new algorithms for efficient computation of these 
kernels. 

Marco et al. (2012) propose a new method to predict protein 
function from protein structure. Implementing hierarchical 
clustering on protein backbone, graph for each protein is 
constructed. Next to this a shortest path kernel is defined to 
measure similarity between graphs. 

Kernel methods provide an efficient way to measure similarity/
dissimilarity between proteins. In protein study, the path length 
between each pair of vertices in protein graph and the secondary 
structure of the protein can be used to frame the kernel. Kernel 
function can be defined based on the neighbourhood of vertices 
of protein graph. These are some ways of framing kernel for the 
protein graph to measure similarity/dissimilarity between proteins. 

Conclusion 
It is trivial that the kernel methods are easier method and occupies 
an inevitable role in the study of protein especially in similarity 
study of proteins. Besides its simplicity the kernel method provides 
a good result when compared with existing methods. At last the 
kernel methods transforms even complex problems to simple one. 
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Spectral Techniques in Protein Study
A Survey 

D. Vijayalakshmi
K. Divya 

Abstract: Network science is a vast multidisciplinary field 
occuping a prominent position in present-day research. 
The techniques from spectral graph theory, probability, 
approximation theory plays major role in network science. We 
give a survey of graph spectral techniques used in protein study. 
This survey consist of description of methods of graph spectra 
used in different study area of protein like protein domain 
decomposition, protein function prediction, similarity.

Keywords: Eigenvalues, spectra, protein.

Introduction 
Spectral graph theory is becoming an important, unavoidable 
part in recent researches. Spectral graph theory narrates the 
relation between the graph and its eigenvalues. For example, the 
connectivity of graph is defined by Laplacian matrix, the number 
of bipartite connected components is obtained from signless 
Laplacian matrix and many more properties are revealed using 
these techniques. In this paper, we brief the various spectral 
techniques used in protein study. 



534  | History and Development of Mathematics in India

In Peng and Tsay (2014), the proteins are represented as 
graphs. The Laplacian matrix for the graph and its eigenvalues 
are considered. The similarity between proteins is measured 
using Euclidean distance of Laplacian spectra. The important fact 
discussed in this journal is the stability of the graph constructed 
for the protein and its stability is verified using entropy. 

In Banerjee (2012) the normalized Laplacian of biological 
network graph is utilized. The information that the normalized 
spectrum can have is investigated based on the eigenvalues. 
The empirical networks are classified based on their properties 
detected through spectral plots of Laplacian matrix. 

Do Phuc and Nguyen Thikim Phung (2009) present protein 
structure graphically. Jacobi rotation algorithm is obtained by 
spectrum of normalized Laplacian. The Euclidean distance 
between these spectra are used to measure similarity between 
proteins. M-Tree method is used to index the spectral vector and 
this increases the efficiency of similarity search in protein structure 
graph database. 

Dragos (2012) discusses various spectra of graphs. The 
similarity between the proteins using spectral distance is explained 
in detail i.e. if the spectral distance is small, the graphs are similar; 
if zero, there are co-spectral and if the distance is high the graphs 
are dissimilar. 

In Vijayalakshmi and Rao (2017), proteins are presented as 
a  graph and the degree distance matrix of the protein graph is 
obtained. The least positive eigenvalue of the degree distance 
matrix is considered as a parameter to measure similarity 
between proteins. Based on the distance between the least positive 
eigenvalues, the percentage of similarity is obtained. 

Peng and Tsay (2014) and Dragos (2012) study the protein 
structural similarity using the spectra of adjacency matrix, 
Laplacian matrix, signless Laplacian matrix and Seidal adjacency 
matrix. The similarity, measured based on the Euclidean distance 
between the spectra of Seidal adjacency matrix, yields a better 
result. 
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Peng and Tsay measure the stability of the graph constructed 
for proteins. Yan Yan (2011) describes several methods in solving 
protein structure identification by graph theory is the topic of 
study in the paper. He first introduced the development of protein 
structure identification and existing problem. Identification of 
side chain clusters in protein structure is done by spectral method. 

Clusters are obtained from the second lowest eigenvalue 
and its vector of Laplacian matrix. Side chain that makes larger 
number of interaction in a cluster is obtained from top eigenvalue 
and its vector. 

Tuan D. Pham (2006) studies similarity of protein sequence 
and calculated similarity using spectral approaches. Linear 
predictive coding [LPC] of protein sequences, based on Electron–
Ion interaction potential, is done in the paper. 

This method reveals non-trivial results in the study of 
functionally related protein sequence and functionally non-related 
protein sequence. 

These existing methods provide a right direction in the research 
of protein study using matrices. It gives a clear idea of constructing 
new matrices relevant to the researches undergone. Irrespective 
of the research problem, the problem can be modelled as a graph 
satisfying the constraints in the problem. After converting to graph, 
a novel matrix or an existing matrix can be associated with the 
graph that makes the study easier. 

This way of approach reduces the complex problem to a 
simple one carrying all the constraints specified in the statement 
of problem. 

Conclusion 
Spectral graph theory plays a vital role in protein study. These 
techniques carry all information about the matrix and these 
matrices carry all information about the graph and thus the 
protein. The methods appear to be simpler, but they are efficient.
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Review of Wiener Index 
and Its Applications

A. Dhanalakshmi
V. Kasthuri

Abstract: The topological index is a numeric quantity associated 
with chemical organization purpose and shows the correlation 
of chemical structures with many physico-chemical properties. 
Wiener Index, which defines the sum of distances between all 
unordered pairs of vertices in a graph, is one of the most popular 
topological indices. In this paper, we have discussed review of 
the Wiener Index and how it is applied to various fields.

Keywords: Hosoya polynomial, molecular descriptors, 
topological indices, Wiener index.

Introduction
Chemical graph theory is the topology branch of mathematical 
chemistry which applies graph theory to mathematical modelling 
of chemical phenomena. Molecular descriptors play a fundamental 
role in chemistry, pharmaceutical sciences, environmental 
protection policy and health researches, as well as in quality 
control, being the way molecules, thought of as real bodies, are 
transformed into numbers, allowing some mathematical treatment 
of the chemical information contained in the  molecule. In the fields 
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of chemical graph theory, molecular topology and mathematical 
chemistry, a topological index, also known as a connectivity 
index, is a type of a molecular descriptor that is calculated based 
on the molecular graph of a chemical compound. In chemical 
graph theory, the Wiener index introduced by Harry Wiener, 
is a topological index of a molecule, defined as the sum of the 
lengths of the shortest paths between all pairs of vertices in the 
non-hydrogen atoms in the molecule. In the fields of chemical 
graph theory, molecular topology and mathematical chemistry, a 
topological index, also known as a connectivity index, is a type of 
a molecular descriptor that is calculated based on the molecular 
graph of a chemical compound. 

Topological Indices
Topological indices are numerical parameters of a graph which 
characterize its topology and are usually graph invariant. Topological 
indices are used, for example, in the development of quantitative 
structure–activity relationships (QSARs) in which the biological 
activity or other properties of molecules are correlated with 
their chemical structure. Topological descriptors are derived from 
hydrogen-suppressed molecular graphs, in which the atoms are 
represented by vertices and the bonds by edges. The connections 
between the atoms can be described by various types of topological 
matrices (e.g. distance or adjacency matrices), which can be 
mathematically manipulated so as to derive a single number, 
usually known as graph invariant, graph-theoretical index or 
topological index. As a result, the topological index can be defined 
as two-dimensional descriptors that can be easily calculated from 
the molecular graphs, and do not depend on the way the graph is 
depicted or labelled and there is no need of energy minimization 
of the chemical structure.

Mircea V. Diudea and Ivan Gutman (1998) obtained the 
undefined approach to the Wiener topological index and its 
various recent modifications. He named Wiener index or Wiener 
number and it was introduced for the first time. (Note that in the 
great majority of chemical publications dealing with the Wiener 
number, it is denoted by W. Nevertheless, in this paper we use 
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the symbol We in order to distinguish between the Wiener index 
and other Wiener-type indices.) Using the language which in 
theoretical chemistry emerged several decades after Wiener, we 
may say that We was conceived as the sum of distances between 
all pairs of vertices in themolecular graph of an alkane, with 
the evident aim to provide a measure of the compactness of the 
respective hydrocarbon molecule.

In 1947 and 1948, Wiener published a series of papers showing 
that there are excellent correlations between We and a variety of 
physico-chemical properties of organic compounds. Nevertheless, 
progress in this field of research was by no means fast. It took 
some fifteen years until Stiel. Since 1976, the Wiener number has 
found a remarkable variety of chemical applications. Thodos  
became the first scientists apart from Wiener to use We. Only in 
1971 Hosoya gave a correct and generally applicable definition 
of We. In 1975/76 Rouvaray and Crafford reinvented We, which 
shows that even at that time the Wiener-number-concept was not 
widely known among theoretical and mathematical chemists. In 
molecular graph, Mircea V. Diudea uses:
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Finally, somewhere in the middle of the 1970s, Wiener index 
began to rapidly gain popularity, resulting in scores of published 
papers. In the 1990s, we were witnesses of another phenomenon: a 
large number of other  topological indices have been put forward, 
all being based on the distances between vertices of molecular 
graphs and all being closely related to Wiener number. The aim of 
this article is to provide an introduction to the theory of the Wiener 
index and a systematic survey of various Wiener-type topological 
indices and their interrelations. In order to achieve this goal, we 
first need to remind the readers of a few elementary facts of the 
chemical graph theory.
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Mohammed Salaheldeen Abdelgader et al. (2018). computated 
the topological indices of Some Special graphs mathematics 
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and explained the study of molecular structures, represents 
an interdisciplinary science called chemical graph theory or 
molecular topology. By using tools taken from graph theory, set  
theory and statistics, we attempt to identify structural features 
involved in structure–property activity relationships. Molecules 
and modelling unknown structures can be classified by the 
topological characterization of chemical structures with desired 
properties. Much research has been conducted in this area in the 
last few decades. Also they developed the oldest degree-based 
topological index, the Randi’c index. The degree-based topological 
indices, the atom-bond connectivity (ABC) and geometric–
arithmetic (GA) indices, are of great importance, with a significant 
role in chemical graph theory, particularly in chemistry. Precisely, 
a topological index Top(G) of a graph is a number such that, if H is 
isomorphic to G, then Top(H) = Top(G). It is clear that the numbers 
of edges and vertices of a graph are topological indices. We let G 
= (V, E) be a simple graph, where V(G) denotes its vertex set and 
E(G) denotes its edge set. For any vertex u ∈  V(G), we call the set 
NG(u) = fv ∈  V(G)juv ∈  E(G)g the open neighbourhood of u; we 
denote by du the degree of vertex u and by Su = åv∈NG(u) d(v) 
the degree sum of the neighbours of u. The number of vertices 
and number of edges of the graph G are denoted by (V(G)) and 
(E(G)), respectively. A simple graph of order n in which each pair 
of distinct vertices is adjacent is called a complete graph and is 
denoted by Kn. The notation in this paper is taken from the books. 
In this paper, we study the molecular topological properties of 
some special graphs: Cayley trees, G2n; square lattices, SLn; a 
graph Gn; and a complete bipartite graph, Km, n. Additionally, 
the indices (ABC), (ABC4), (GA) and (GA5) of these special graphs, 
whose definitions are discussed in the materials and methods 
section, are computed.

The concept of topological indices came from Wiener while 
he was working on the boiling point of paraffin and was named 
the index path number. Later, the path number was renamed 
as the Wiener Index. Hayat and Imran (2014) studied various 
degree-based topological indices for certain types of networks, 
such as silicates, hexagonals, honeycombs and oxides. Hayat and 
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Imran (2014) studied the molecular topological properties and 
determined the analytical closed formula of the ABC, ABC4, ABC5, 
GA, GA4 and GA5 indices of Sierpinski networks. M. Darafsheh 
(2010) developed different methods to calculate the Wiener Index, 
Szeged Index and Padmakar–Ivan Index for various graphs using 
the group of automorphisms of G. He also found the Wiener 
indices of a few graphs using inductive methods. A. Ayache and 
A. Alameri (2016) provided some topological indices of mk-graphs, 
such as the Wiener Index, the hyper-Wiener Index, the Wiener 
polarity, Zagreb indices, Schultz and modified Schultz indices 
and the Wiener-type invariant.

A. Behtoei et al. (2011) determined new inequalities for Wiener 
and hyper Wiener indices, in term of the first and the second 
Zagreb indices and the number of hexagons in these graphs. These 
inequalities improve the bounds obtained by Gutman and Zhou 
and are the best possible bounds. Our notations are standard and 
mainly taken from Alameri, A. et al (2006). Let G = (V, E) be a graph 
with vertex set V = V (G) and edge set E = E(G). We denote by d(x, 
y), N(x) and d(x), the distance between vertices x and y, vertices of 
distance one with vertex x and the degree of x, respectively. Also 
for each e = uv ∈ E(G) we use the notations Ne(v), ne(v) and αe(v) 
for the set of vertices t ∈ V(G) with d(v, t) < d(u, t), |Ne(v)| and t ∈ 
Ne(v) d(t), respectively. A topological index is a number related to 
a graph which is a structural invariant, i.e. it is fixed under graph 
automorphisms. The Wiener Index, denoted by W, is defined as 
the sum of all distances between vertices of a graph. 

Having a molecule, if we represent atoms by vertices and 
bonds by edges, we obtain a molecular graph (Martin Knor, 
2016. Graph theoretic invariants of molecular graphs, which 
predict properties of the corresponding molecule, are known as 
topological indices. The oldest topological index is the Wiener 
Index, which was introduced in 1947 as the path number. Martin 
Knor obtained some fundamental property of Wiener Index: 
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The Wiener Index (i.e. the total distance or the transmission 
number), defined as the sum of distances between all unordered 
pairs of vertices in a graph, is one of the most popular molecular 
descriptors. In this article we summarize some results, conjectures 
and problems on this molecular descriptor, with emphasis on 
works we were involved in. At first, the Wiener Index was used 
for predicting the boiling points of paraffins, but later a strong 
correlation between the Wiener index and the chemical properties.

A representation of an object giving information only about 
the number of elements composing it and their connectivity is 
named as topological representation of an object. A topological 
representation of a molecule is called a molecular graph. A 
molecular graph is a collection of points representing the atoms 
in the molecule and a set of lines representing the covalent bonds. 
These points are named vertices and the lines are named edges in 
graph theory language. J. Baskar Babujee and S. Ramakrishnan 
(2012) introduce new topological indices which yield the Wiener, 
hyper-Wiener, Schultz and modified Schultz indices as special 
cases for trees. One advantage of this method is that in computing 
Schultz and modified Schultz indices of trees we need not take 
into account the distances between vertices. The advantage of 
topological indices is that they may be used directly as simple 
numerical descriptors in comparison with physical, chemical 
or biological parameters of molecules in Quantitative Structure 
Property Relationships (QSPR) and in Quantitative Structure 
Activity Relationships (QSAR). One of the most widely known 
topological descriptors is the Wiener Index named after chemist 
Harold Wiener. Wiener Index correlates well with many physico-
chemical properties of organic compounds and as such has been 
well studied over the last quarter of 20th century.

Zagreb group indices  M1(G) and M2(G) appeared in the 
topological formula for the π-electron energy of conjugated 
systems. Recently introduced Zagreb co-indices are dependent 
on the degrees of non-adjacent vertices and thereby quantifying 
a possible influence of remote pairs of vertices to the molecule’s 
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properties. Platt number was used to predict the physical 
parameters of Alkanes. Reverse Wiener Index is used to produce 
QSPR models for the alkane molar heat capacity.

J. Baskar Babujee and Ramakrishnan (2012) investigated few 
topological indices like Wiener index, Zagreb index, Zagreb 
coindex, Platt number, geometric – arithmetic index and reverse 
Wiener index for graphs. Let G = (V, E) be a graph with vertex set 
V = V (G) and edge set E = E(G). We denote by d(x, y), N(x) and 
d(x), the distance between vertices x and y, vertices of distance 
one with vertex x and the degree of x, respectively. Also for each 
e = uv ∈ E(G) we use the notations Ne(v), ne(v) and αe(v) for the 
set of vertices t ∈ V (G) with d(v, t) < d(u, t), |Ne(v)| and t ∈ Ne(v) 
d(t), respectively. A topological index is a number related to a 
graph which is structurall invariant, i.e. it is fixed under graph 
automorphisms. The Wiener Index, denoted by W, is defined as 
the sum of all distances between vertices of a graph. 
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Abstract: The study in bioinformatics involves typical database 
search of DNA, RNA or protein. Based on the way of search 
the required studies are further developed one such way are 
MATLAB and its programmes. In this paper, we brief about the 
use of MATLAB in various studies of proteins encode, amount 
of protein adsorption on particle, sequence alignments, protein 
structure tessellations which help in making the studies easy.

Keywords: Sequence alignment, protein, MATLAB.

Introduction
A sequence alignment is regulating the biological sequences 
including DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) 
or protein.The study about sequence alignment can be done in 
many ways and one such way is using software. These studies are 
useful in identifying the similarity between proteins which make 
the protein studies simpler. Similarity of protein is identifying 
the degree of similarity between two sequences. Even though 
the proteins do not show common function based on structures, 
sequence alignment is one of the powerful methods to identify 
the structure and function of a protein. Sequence alignment is 
used to identify regions of similarity between two biological 
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sequences (protein or nucleic acid), this type of alignment is based 
on numerical values. Nowadays researchers use computer-based 
language (MATLAB) to simplify the method of identifying the 
similarity of protein sequence. In this paper we brief about some 
MATLAB methods used in protein study.

Researcher Wen Zhang and MengKe (2014) analyses protein 
sequences using MATLAB toolbox (named Protein Encoding), 
which helps to represent or encode protein sequences for 
bioinformatics. Researcher Meghna Mathur and Geetika (2013)
discuss various sequence alignment methods using Needleman 
Wunsch and Smith Waterman algorithms in MATLAB. Researcher 
Majid Masso (2010) discusses Tessellation of protein structure by 
the atomic coordinates in 3-D using MATLAB. Researcher Asavari  
Mehta (2014) developed a MATLAB model that will estimate the 
amount of blood plasma protein that will adsorb to the surface of 
a nanoparticle used in targets. 

Protein Sequence Encoding
In these Wen Zhang and MengKe describe the protein encoding 

Table 42.1: Features and Length of Proteins
Features Length
Amino acid composition 20
Dipeptide composition 400
Moreau-Broto autocorrelation 8*nlag
Moran autocorrelation 8*nlag
Geary autocorrelation 8*nlag
CTDC 21
CTDT 21
CTDD 105
Conjoint triad 343
Sequence-order-coupling number 2*nlag
Quasi-sequence-order 40 + 2*nlag
Pseudoamino acid composition 20 + nlag
Amphiphilic pseudo amino acid composition 20 + 2*nlag
Amino acid pair 400
Binary profile 20*N
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which are used for identifying the bioinformatics in protein 
sequence using MATLAB. These features and its length are shown 
in Table 42.1.

Numerical Representation Using MATLAB
The toolbox consists of four windows: input, result, descriptors and 
buttons. The input block is used to enter sequences, and a sequence 
is in the fasta format. The output blocks resulting numerical 
vectors. The descriptors panel having various descriptors and the 
users were able to choose features in the panel in an easier way.

The four buttons used for: run(seq),  run(file), save, exit. The 
first and second buttons are used to start the encoding procedure. 
The third button is used for result. The last button closes the 
dialogue box. By using the toolbox we can easily get the protein 
sequences into the numerical values and use them to predict 
the protein functions or structures. Wen Zhang and MengKe 
discuss a MATLAB toolbox (protein encoding), which helps to 
represent or encode protein sequences as numerical vectors for 
bioinformatics. This MATLAB toolbox is easy to use, and users 
without the computer science background can easily understand 
the sequence of protein.

fig. 42.1: MATLAB toolbox for protein encoding
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Methods of Alignment
DOT MATRIX METHOD

A dot matrix analysis is primarily a method for comparing two 
sequences to align the characters between the sequences. It is used 
to locate the regions of similarity between two sequences. Similar 
structure shows similar evolution, which provides information 
about the functions of these sequences (fig. 42.2).

The dot matrix plot is created by designating one sequence 
on the horizontal axis and designating the second sequence on 
the vertical axis of the matrix. Diagonal lines within the matrix 
indicate regions of similarity. The dot matrix computer programs 
do not show an actual alignment.

DYNAMIC PROGRAMMING

Dynamic programming (DP) algorithms are used for complex 
problems. DP algorithm has some problem with the following 
key points: 
	 1.	 It should have an optimal substructure. 
	 2.	 It must contain overlapping sub-problems. 

fig. 42.2: Sequence dot plot between Russian neanderthal and 
German neanderthal
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DP works by first solving every sub-problem just once, and 
saves its answer to avoid the work of recalculating the answer every 
time, the sub-problem is encountered. Each intermediate answer is 
stored with a score, and DP finally chooses the sequence of solution 
that have the highest score. Both global and local alignments may 
be made by simple changes in DP algorithm.

Scoring functions – example
w (match) = − 2 or substitution matrix
w (mismatch) = − 1 or substitution matrix
w (gap) = − 3.
Dynamic programming has an alignment for a given set of 

scoring function which is its advantage. But it is slow because of the 
large number of steps and memory requirement which increases 
as the square of the sequence lengths. Dynamic programming 
has two algorithms that are used sequence alignment Needleman 
Wunsch and Smith Waterman algorithms.

SEQUENCE ALIGNMENT TOOLS

Meghna Mathur and Geetika discuss the Local Basic (BLAST), 
Alignment Search Tool, which is an algorithm for comparing 
sequence information, such as the amino-acid sequences of 
different proteins. It creates the fundamental problem and the 
heuristic algorithm is used for alignment. They, using a heuristic 
method, BLAST, finds similar sequences, not by comparing two 
sequence fully, but simple matches between the two sequences. A 
sequence can be evaluated based on various factors like algorithm, 
probability, accuracy and definiteness of an algorithm.
	 1.	 The algorithm that takes less time to identify sequence. 
	 2.	 Probability, it helps to obtain accurate results and higher 

speed.
	 3.	 The factor can be accuracy of an existing algorithm. An 

algorithm should always give one output to the number of 
inputs applied and accuracy can be defined. 

	 4.	 The factor can be definiteness. Definiteness means the 
algorithm should have finite number of steps. 
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If an algorithm does not have finite number of steps then 
the algorithm cannot give the correct results. Multiple sequence 
alignment has emerged to have a lot of applications in the field 
of bioinformatics such as sequence alignment help to identify the 
pattern recognition.

Protein Structure Tessellations
Majid Masso discusses Tessellation of Protein Structure by the Cα 
coordinates in 3-dimension using MATLAB. The building blocks 
of amino acids is having 20 distinct types in nature (A, C, D, E, F, 
G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y). Protein represent in the 
form of atom, backbone ribbon and tessellation. In these he uses 
every amino acid into a point of Cα coordinates in 3-dimension by 
using program in MATLAB. 

From the Cα coordinate point which is representing each of 
amino acids having X, Y, Z vertices which help not to overlap in 
3-dimension.

fig. 42.3: Delaunay Tesellation in MATLAB
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fig. 42.4: Five simplex categories for coordinates

From the above five simplex categories (fig. 42.4) distinct 
tetrahedral and volume for an HIV-1.

fig. 42.5: Simplex Categories Example

For {1-1-1-1} – 73 simplices mean T = 0.11 mean V = 41.51
For {2-1-1} – 95 simplices mean T = 0.18 mean V = 19.27
For {2-2} – 89 simplices mean T = 0.15 mean V = 9.45
For {3-1} – 109 simplices mean T = 0.20 mean V = 10.09
For {4} – 16 simplices mean T = 0.18 mean V = 5.61
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Amount of Blood Plasma Protein 
Adsorption on Nanoparticles 
Asavari Mehta used a mathematical model that tells an amount 
of plasma protein that can adsorb on a particle of carrier which is 
coated with a Poly ethylene glycol (PEG) that gave the benefit of 
selection of optimal values 
	 1.	 PEG molecular weight,
	 2.	 PEG mass fraction, and 
	 3.	 carrier particle diameter which is essential to the creation 

of a PEG-coated.
The formula obtained from the paper of researcher Gref 

et al. (2000), in that the Surface density threshold (STD) which 
represents the small area between PEG chains over the surface of 
a nanoparticle which creates the blockage of adsorption. The STD 
formula which contains all the three factors mentioned above, 
which is used for the representation of the amount of PEG in the 
form of molecular weight and mass fraction which minimizes 
protein adsorption on nanoparticles.The estimation of protein 
adsorption is restricted to the parameter that indicates either 
the PEG molecular weight or the PEG mass fraction. The protein 
adsorption due to PEG molecular weight was not valid for PEG 
mass fraction and vice versa. The correlation coefficient for the 
correlation test for PEG molecular weight is R2 = 0.997 and for 
PEG mass fraction is R2 = 0.988. The scheme was not successful 
in the protein adsorption value that is for the average diameter of 
the nanoparticles, because there was no experimental detail for 
nanoparticle diameter data from Gref et al. 

So the above-mentioned PEGmw and PEGmf are not accounting 
for changes in particle diameter. The attempts were to combine 
the two separate models of PEGmw and PEGmf to find a universal 
metric that could establish the parameter of a nanoparticle that 
minimizes the adsorption of protein. One metric was to create 
a ratio of the two parameters and another was to create the 
product (multiplication) of the two parameters and it develops a 
curve for each metric. The results did not give a promise because 
the variation of each metric which does not produce a matched 
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correlation. Finally, researchers use this modelling tool as a 
starting point to design PEG-coated, drug-carrier nanoparticles 
as it related to variation of PEG molecular weight or PEG mass 
fraction. This model presented in this study for simulating plasma 
protein adsorption on nanoparticles that would notably inform 
the fabrication of effective, immuno-deceptive, drug-eluting 
nanoparticles for cancer treatments.

Conclusion
This is a simple and an easy method in proteins study using 
MATLAB. While it is simple, it proves its efficiency for protein 
sequence alignment. A protein study in this MATLAB acts as 
a good tool which is used to identify the simplest way to align 
protein sequence.
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